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Uncertainty Quantification communicates to stakeholders: (a) if  and 
when they should trust model predictions. (b) how fair these 
predictions are on sample-wide and patient-specific cases. Therefore, 
Uncertainty Quantification enhances a model’s transparency by 
exposing a model’s properties to various stakeholders to better 
understand, improve, and contest the model’s predictions. 

Goal: Quantify model uncertainty by using a partially bayesian neural 
network to communicate where the model is uncertain of  its 
prediction of  a pixel being classified as “tumor” or “non-tumor.”

Research Questions: Where is this model failing, and how is it 
failing to properly segment the tumor? In what cases is the model 
certain but still making mistakes in tumor segmentation? 

Methods

Acknowledgements & References
We would like to thank Dr. Nikola Banovic and Snehal Prabhudesai for their 
phenomenal mentorship this summer. We would also like to thank Dr. 
Bhramar Mukherjee and the rest of  the Big Data Summer Institute for the 
opportunity to conduct this research.

● Collaborating with clinicians to better understand why model fails
in specific brain regions, and why false positive and false negative
results tend to cluster.

● Comparing model performance and uncertainty levels across
various subsets (e.g., different tumor histologies, tissue source
sites, patient sex, vital status,  etc.).

● Investigating the implications of  the different kinds of  model
failure on clinical outcomes.  Investigating what kind of  model
failure (i.e., false positives or false negatives) is considered more
dangerous by clinicians.

● Investigating why the model produces different errors on patients
with similar clinical information.

Results

● Radiologists segment tumors from MRI scans to determine
treatment plans such as surgical resection or radiation therapy.

● Neural networks can streamline the segmentation process to ensure
ideal tumor removal and reduce the burden on radiologists.

● These black-box models currently lack explainability, which leads to
a lack of  trust from different end users like physicians and patients.

The results presented in Figures 2 and 3 depict common patterns in 
the model’s uncertainty. Below are patterns and possible hypotheses.

From Figure 2:
● Highest uncertainty is found in boundary regions of  the model’s

predicted tumor location.
○ Hypothesis: The model is most uncertain about its pixel

classification near predicted tumor boundaries.
● The false negative and false positive pixels cluster in groups.

From Figure 3:
● Generally, there is higher certainty for accurately classified pixels.
● There is also greater certainty for false negatives than false positives.
○ Hypothesis: The model is more confident about classifying a pixel

as “non-tumor” than “tumor.”
● The sample-wide trends do not necessarily hold at patient-level.
○ Two example patients have highly similar clinical information but

their normalized uncertainty distributions vary greatly.

Project Goal & Research Question

Figure 1: UNET model with layers labeled. 

Layer 1: encoder_1a uses Bayesian Conv2DFlipout 
weights from the tensorflow package with a normal 
prior distribution centered at 0 with a variance of  100.

The weights for each prediction are generated via 
sampling 100 times from the push-forward posterior 
distribution. Any pixel with a mean less than 0.5 is 
classified as “no-tumor”; a pixel with a mean at or 
above 0.5 is classified as “tumor”, The standard 
deviation quantifies the model’s uncertainty. The 
uncertainty is normalized across the sample with 
formula below:

Figure 3: Box plots of  the normalized uncertainty distribution across different discrepancy values (from left to right: false negative, 
accurate, false positive). The leftmost set of  box plots represents the entire sample (sample-wide). The right two sets of  box plots 

illustrate two patients in the test set with similar clinical features (e.g. same tumor study, histology,  and grade) but different 
normalized uncertainty distributions, grouped by discrepancy.

Figure 2: Image output for a patient in the test set. Top row displays the four input modalities, in which each modality highlights a different tissue 
type. In the bottom row, the leftmost plot is the radiologist-segmented tumor, or the “ground truth.” The right three images are model-generated 
outputs. The prediction plot is generated by thresholding the mean of  the samples at 0.5. The uncertainty plot depicts the standard deviation of  

the samples. Lastly, the truth-prediction discrepancy plot portrays the difference between the ground truth prediction and thresholded mean.

A pixel is classified as False Negative if  the model 
identifies it as non-tumor when the true label is tumor.
A pixel is classified as False Positive if  the model 
identifies it as tumor when the true label is non-tumor.
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