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Abstract

Within the last two decades, high throughput sequencing has become one of the
most popular methods for data generation within genomics, epigenomics, and tran-
scriptomics (Lee, 2023). A popular method of high throughput sequencing is chro-
matin immunoprecipitation followed by high throughput sequencing, or ChIP-Seq.
ChIP-Seq data provides vital insights into locations on the genome where there are
differences in DNA occupancy between experimental states (i.e., differential DNA
occupancy) (Wu et al., 2015). However, since ChIP-Seq data is collected experimen-
tally, it must be normalized to assess which genomic regions have differential DNA
occupancy. While normalization is an essential step in identifying genomic regions
with differential DNA occupancy, the primary technical conditions underlying ChIP-
Seq normalization methods have yet to be meticulously examined in the academic
literature. In this thesis, we identify three primary technical conditions underlying
ChIP-Seq between-sample normalization methods: (1) Symmetric Differential DNA
Occupancy, (2) Equal Amount of Total DNA Occupancy, and (3) Equal Amount
of Total Background Binding. We then categorize popular ChIP-Seq normalization
methods based on the technical conditions they use to normalize between experimen-
tal states. A major contribution of this thesis is our ChIP-Seq read count simulation
results, which validate our categorization of the normalization methods by their tech-
nical conditions. We conclude by underscoring how our findings demonstrate that
not all normalization methods are equally effective on all kinds of ChIP-Seq data.
Instead, our results emphasize that biologists should use their understanding of the
ChIP-Seq experiment at hand to guide their choice of normalization method.
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Chapter 1

Introduction

Within the last two decades, high throughput sequencing has become one of the most
popular methods for data generation within genomics, epigenomics, and transcrip-
tomics (Lee, 2023). One popular method of high throughput sequencing is chromatin
immunoprecipitation, followed by high-throughput sequencing, which is commonly
referred to as ChIP-Seq. ChIP-Seq aims to characterize the occupancy behavior of
a protein of interest (e.g., a transcription factor, histone modification, etc.) on the
genome or DNA (Wu et al., 2015).1

In ChIP-Seq experiments, peaks (i.e., genomic regions enriched with DNA binding)
are typically the unit of interest because ChIP-Seq experiments are often conducted
to assess whether a certain genomic region is truly occupied by the protein of in-
terest in the experimental state. In this thesis, we refer to DNA occupancy as the
population parameter that we aim to estimate through ChIP-Seq experiments and
refer to the sample estimate of DNA occupancy as the DNA binding. Often, biolo-
gists care not only about DNA occupancy but also about whether there is differential
DNA occupancy between experimental states. That is, whether the true amount of
DNA occupied by the protein of interest is different between experimental states for
a given peak. Differential DNA occupancy is estimated via differential binding. A
peak is considered differentially bound if there is a statistically significant difference in
the amount of DNA binding between experimental states (Nakato and Sakata, 2020).
The amount of DNA binding in a given genomic region is found by counting the num-
ber of aligned reads (i.e., sequenced transcripts) that are associated with the region.
Genomic regions with higher read counts (i.e., more DNA binding) are expected to
have a larger amount of DNA occupancy (Nakato and Sakata, 2020).2

Since ChIP-Seq data is collected experimentally, there is expected to be a differ-
ence in the read counts (and thus the observed DNA-protein binding) across experi-

1A detailed description of ChIP-Seq data collection is provided in Chapter 2.1.
2In ChIP-Seq literature, the population parameter and its estimate are both referred to as

differential DNA binding. However, we use different terms for the parameter and estimate to make
it clearer whether we were referring to the parameter (i.e., differential DNA occupancy) or the
estimate (i.e., differential DNA binding) in this thesis.
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mental states, regardless of whether or not there are differences in DNA occupancy.
In turn, statistical models (which rely on technical conditions about the underlying
structure of the true DNA-protein binding) allow us to perform hypothesis tests in or-
der to detect statistically significant differences in the observed DNA binding across
experimental states. The process of hypothesis testing to assess for differences in
DNA binding across different experimental states is referred to as differential binding
analysis (Nakato and Sakata, 2020).

However, using raw read counts across experimental states to conduct differential
binding analysis is fallible for at least two reasons. First, the total reads aligned to
a given peak is commonly considered a random variable (Anders and Huber, 2010).
So, even if a peak has different read counts across experimental states, it could have
the same amount of DNA occupancy across those experimental states. Second, non-
random events can influence the number of reads aligned to a peak. Non-random
events include experimental artifacts like changes in the amount of DNA loaded or
the quality of the antibody used.3 Such experimental artifacts influence the sequenc-
ing (or read) depth (i.e., the total number of reads across the entire sample) (Nakato
and Sakata, 2020). Thus, differences in read counts in a given peak can arise between
experimental states even if there is no difference in the DNA occupancy between the
experimental states. In an attempt to ameliorate the influence of random variability
and experimental artifacts on which genomic regions are classified as differentially
bound and thus presumed to have different DNA occupancy between the experimen-
tal states, the raw read counts must be normalized between the samples prior to
performing differential binding analysis (Steinhauser et al., 2016).

Before the read counts can be normalized between experimental states, consensus
peaks must first be identified from the collected ChIP-seq data. The process of
identifying peaks is commonly called peak-calling. Peak-calling aims to distinguish
background regions where there is DNA occupancy from regions where there is not
(Nakato and Sakata, 2020). The peaks found via peak-calling are then consolidated
into a consensus peak set (Stark and Brown, 2011). After identifying the consensus
peaks, a read count matrix is generated. In the matrix, each entry is the raw read
count for a consensus peak across the different experimental states (Stark and Brown,
2011). These read counts are then normalized between samples, and differential
binding analysis is performed using the normalized read counts (Nakato and Sakata,
2020).

There are various ChIP-Seq normalization methods available to biologists, and we
will examine several popular normalization methods (e.g., Library Size (Dillies et al.,
2012), TMM (Robinson and Oshlack, 2010), and RLE (Love et al., 2014)) in this
thesis. The normalization methods we consider in this thesis are all compatible with
DiffBind, an R package that performs the entire pipeline of ChIP-seq data analysis,
from creating the consensus peak set across experimental states to performing differ-
ential binding analysis. However, while there are various normalization methods that

3Thank you to Professor Schulz at Harvey Mudd College for emphasizing this point.
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biologists can employ, there is a dearth of literature specifying which normalization
method should be selected within a given biological context. A major contribution of
this thesis is to identify the different technical conditions of ChIP-Seq normalization
methods in order to provide a framework for selecting between different normaliza-
tion methods. Through our work, we identify three key technical conditions: (1)
symmetric differential DNA occupancy, (2) equal amount of total DNA
occupancy, and (3) equal amount of total background binding. Here is a brief
overview of what each technical condition entails:

1. Symmetric Differential DNA Occupancy: there is roughly symmetric dif-
ferential DNA occupancy across experimental states. That is, the number of
peaks with more DNA occupancy in one experimental state is equal to the
number of peaks with more DNA occupancy in the other experimental state.

2. Equal Amount of Total DNA Occupancy: the amount of total DNA occu-
pancy is the same across the two experimental states. That is, each experimental
state has the same amount of DNA occupancy per cell.

3. Equal Amount of Total Background Binding: the number of rogue back-
ground DNA binding is the same across experimental states.

While the role of normalization methods has been analyzed through the lens of
their technical conditions for RNA-seq, which is another popular technique for high
throughput sequencing (e.g., see Evans et al. (2016)), there is currently no analo-
gous analysis of ChIP-Seq between-sample normalization. However, ChIP-Seq data
is used to answer different types of biological questions than RNA-Seq data. RNA-
Seq focuses on characterizing true (differential) gene expression, whereas ChIP-Seq
focuses on characterizing (differential) DNA occupancy. In virtue of asking differ-
ent questions, RNA-Seq and ChIP-Seq data also have different underlying structures.
For one, unlike in RNA-Seq, there are no pre-defined genomic regions of interest in
ChIP-Seq. Instead, the genomic regions of interest are defined through the process
of peak-calling. Thus, there is an added layer of variability in ChIP-Seq data that is
not present in RNA-Seq data. Therefore, we cannot directly apply the results from
RNA-Seq analyses to ChIP-Seq normalization methods. Rather, ChIP-Seq normal-
ization methods must be explicitly analyzed through the lens of their own technical
conditions.

In this thesis, we identify three technical conditions underlying different between-
sample ChIP-Seq normalization methods and demonstrate how violating the technical
conditions can influence the biological conclusions about which peaks have differential
DNA occupancy between experimental states. We first provide a biological primer on
ChIP-Seq and its data analysis workflow for differential binding analysis in Chapter
2. We then illustrate why normalization is necessary as well as why satisfying the
technical conditions is crucial for accurate downstream differential binding analysis
in Chapter 3. Next, we categorize popular ChIP-Seq normalization methods by their
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main technical conditions in Chapter 4. To examine how violating some combination
of our primary technical conditions impacts the performance of different normalization
methods, we simulate ChIP-Seq read count data. In particular, we investigate how
violating some combination of the primary technical conditions affects the average
false discovery rate, power, and absolute size factor ratios associated with various
ChIP-Seq normalization methods as we vary the proportion of peaks with differential
DNA occupancy. We explicate our ChIP-Seq read count simulation and associated
metrics in Chapter 5 and present our simulation results in Chapter 6. We end with
a discussion of how this thesis’ findings underscore the importance of understanding
the underlying structure of ChIP-Seq data when choosing a normalization method in
order to draw meaningful biological conclusions.

4



Chapter 2

ChIP-Seq and Differential Binding
Analysis

2.1 ChIP-Seq Data Collection

One purpose of ChIP-Seq experiments is to identify genomic regions that have dif-
ferential DNA occupancy across experiment states. We consider a genomic region
to have differential DNA occupancy across experimental states if there is a difference
(on average) in the amount of DNA occupied per cell by a protein in that region
across the different experimental states (Nakato and Sakata, 2020). ChIP-Seq helps
identify genomic regions with differential DNA occupancy by generating read count
data, which is meant to approximate the degree to which a protein of interest occu-
pies a genomic region. In this thesis, we distinguish differential DNA occupancy from
another important term: differential DNA binding. We consider a genomic region to
be differentially bound if there is a statistically significant difference in the aligned
read counts (i.e., amount of DNA binding) across the different experimental states.
The following high-level procedure is done to generate ChIP-Seq data (Nakato and
Sakata, 2020; Park, 2009):

Step (1): Immunoprecipitate the DNA-protein fragments with a specific anti-
body

Step (2): Purify the DNA

Step (3): Map the purified DNA (i.e., reads) to a reference genome

5



Figure 2.1: A high-level overview of ChIP-Seq data collection. In Step (1),
the DNA-protein fragments are immunoprecipitated with a specific antibody that is
known a priori to bind with the protein of interest. In Step (2), the DNA is purified,
meaning that the antibody and protein of interest are removed from the DNA. In
Step (3), the purified DNA fragments (which are referred to as “reads”) are mapped
to a reference genome. Components of this illustration were taken from Figure 1 in
Lodhi and Tulin (2011).

Immunoprecipitation with a specific antibody (i.e., Step (1)) is a key step of
the ChIP-Seq data collection process. In this step, an antibody that is known (or
theorized) a priori to bind with the protein of interest is used to pick out the DNA
fragments that the protein of interest occupies. Ideally, after immunoprecipitation,
only the DNA fragments that were occupied by the protein of interest remain. These
remaining DNA fragments are then purified (i.e., released from the protein of interest
and antibody) in Step (2) (Park, 2009). After the DNA has been purified, the DNA
fragments are mapped to a reference genome based on where the reference genome’s
and DNA fragments’ nucleotide sequences match one another during Step (3). Each
mapped DNA fragment is considered a read.

The data collection process is then repeated for each replicate across each exper-
imental state. A replicate refers to a specific ChIP-Seq sample within a given ex-
perimental state (Höllbacher et al., 2020). Meanwhile, experimental state is broadly
defined as the features of the experiment, which the researchers explicitly vary to an-
alyze how the change affects the DNA occupancy of a specific protein of interest. For
example, Kotipalli et al. (2021) used ChIP-Seq data to investigate how the H3K4me3
histone modification’s (a type of protein’s) behavior varied between normal-like and
breast cancer cell lines (Kotipalli et al., 2021). For Kotipalli et al. (2021), one ex-
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perimental state would be the normal-like cell lines, and the other experimental state
would be the breast cancer cell lines, as this is what they are explicitly changing in
their experiment to see its effects on DNA occupancy for the H3K4me3 histone mod-
ification. Meanwhile, the replicates are all the ChIP-Seq samples that are collected
under the same experimental state (i.e., in normal-like cell lines or breast cancer cell
lines).

2.2 Data Analysis for Differential Binding

After ChIP-Seq data collection is completed, downstream analysis can be conducted
on the aligned DNA reads. A popular method of data analysis of ChIP-Seq read count
data is differential binding analysis, which estimates differential DNA occupancy for
a given protein of interest. Usually, the downstream analysis of ChIP-Seq data for
differential binding involves the following workflow (Stark and Brown, 2011):

Step (4): Perform Peak-calling within each replicate

Step (5): Identify the consensus peak set within each experimental state

Step (6): Identify the consensus peak set across the experimental states

Step (7): Normalize across the experimental states1

Step (8): Perform differential binding analysis across the experimental states

Typically, the first step of ChIP-Seq data analysis is calling the peaks within each
replicate (i.e., Step (4)), which is illustrated in Figure 2.2. Peaks are genomic regions
that are significantly enriched with aligned reads in the replicate (Bailey et al., 2013).
One common peak-calling software for ChIP-Seq is MACS (i.e., Model-based Analysis
of ChIP-Seq) (Zhang et al., 2008). In MACS, peak-calling is done using hypothesis
testing, where the expected number of reads in a genomic region is compared to the
actual number of reads in that region. For MACS, the expected number of reads is
calculated dynamically via a local Poisson distribution, which aims to capture any
local biases in the replicate (Zhang et al., 2008). If the p-value for the region is below
a pre-specified cut-off (which is 10−5 by default), then it is classified as a peak.2 Any
genomic region that is not called as a peak is then considered background.

1This step is usually referred to as between-sample normalization. Note, too, that sometimes
there is another step between 6 and 7 where read counts are normalized within a given replicate
rather than across experimental states. This process of normalization within a replicate is generally
referred to as within-sample normalization.

2In newer versions of MACS, like MACS2 (which we use in our simulation), the p-values
are adjusted for multiple comparisons using the Benjamini-Hochberg method. We describe the
Benjamini-Hochberg method in more detail in Section 8. Thank you to the Harvard Biostatistics
Core (HBC) for clarifying this point in their online training: https://hbctraining.github.io/

Intro-to-ChIPseq/lessons/05_peak_calling_macs.html.
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Figure 2.2: Illustration of Step 4: peak-calling within a replicate. The hori-
zontal axis represents the genome location, and the vertical axis represents the number
of aligned reads (i.e., DNA binding) to that specific genome location. The top plot is
an illustration of what ChIP-Seq data looks like after being mapped to the genome.
The bottom plot is an illustration of the peak-calling process with the ChIP-Seq repli-
cate. The yellow-highlighted regions with the black box around them denote regions
that would likely be called as peaks. All the genomic regions outside the yellow-
highlighted boxes would likely be considered background.

After peak-calling has been conducted for each replicate, the next step is to gen-
erate a consensus peak set within each experimental state (i.e., Step (5)). Consensus
peaks within states are regions that are called as peaks in a user-specified number of
replicates within a given experimental state (Stark and Brown, 2011). This number
(along with how many bases in different replicate peaks must be shared for it to be
classified as the same peak) is determined based on how conservative the user wants
to be about what to consider as a potential differentially bound region in Step (8).
After the consensus peak set within each condition has been generated, the consen-
sus peak set across experimental states is generated in Step (6). Consensus peaks
across states are regions that are called as consensus peaks within conditions in a
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user-specified number of the experimental states (Stark and Brown, 2011). In this
thesis, we only consider cases where there are two unique experimental states. So,
the consensus peaks across states will always be the union of the consensus peaks
within each state in our thesis.3. Figure 2.3 provides an illustration of what would be
considered consensus peaks within and across two unique experimental states.

Figure 2.3: Illustration of consensus peaks within and across experimental
states. In the illustration, we have two experimental states (A and B) and two
replicates (1 and 2) in each experimental state. For the top layer of the figure, each
circle denotes the specific peak set in a specific replicate. The orange regions (i.e.,
the intersection between replicates 1 and 2 for experimental states A and B) would
be the consensus peak set within experimental states if we require two replicates
to share a peak for it to be part of consensus peak set within each experimental
state. In the bottom layer of the figure, we have the consensus peaks across the
experimental states. The blue region (i.e., the union between the consensus peak set
within conditions A and B) denotes the consensus peak set across the experimental
states if we only require the peak to be a consensus peak set within one experimental
state for it to be counted as part of the consensus peak set across the experimental
states.

3Usually, even when there are more than two experimental states, the consensus peak set across
states is defined to be the union of the consensus peaks within each experimental state so that the
peaks that appear in one experimental state but not the others can still be candidates for
differential DNA binding in downstream analysis. For more on this, see the following Biostars
thread: https://support.bioconductor.org/p/89517/.
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2.2.1 Between-Sample Normalization

The focus of our thesis is on ChIP-Seq normalization between experimental states,
which is Step (7) in data analysis for differential binding. Paradigmatically, between-
sample normalization involves calculating and then applying a size factor (which is
also sometimes called a scaling factor) to the raw ChIP-Seq read counts associated
with each peak in order to generate normalized read counts for the given peak. That
is, the normalized read count for peak i in sample j is computed as follows:

(Normalized Read Count)ij =
(Raw Read Count)ij

sj
(2.1)

where sj is the size factor associated with sample j.

The main goal of applying a size factor to the raw read counts for a given sample is
to reduce the differences in read counts (i.e., DNA binding) between samples that re-
sult from the experimental nature of ChIP-Seq data collection rather than differences
in DNA occupancy (Wu et al., 2015). Experimental artifacts that can arise in ChIP-
Seq data include features such as the amount of chromatin loaded into the sequencer,
the quality of the antibody, how long the replicate is in the sequencer, etc., that can
influence the sequencing (or read) depth (i.e., the total number of aligned reads) for
a given replicate (Nakato and Sakata, 2020). Crucially, however, ChIP-Seq between-
sample normalization methods have technical conditions. These technical conditions
rely on an expected ChIP-Seq data structure in order to ascertain the expected differ-
ence in the DNA binding in a given peak that is due to differences in DNA occupancy
between the experimental conditions and normalize the ChIP-Seq data accordingly.
We further explain the importance of satisfying normalization technical conditions
in Chapter 3. We then categorize popular normalization methods by their technical
conditions in Chapter 4. Our categorization is confirmed by our simulation results,
which we present in Chapter 6

2.2.2 Differential Binding Analysis

After between-sample normalization has been performed, the normalized read counts
associated with each peak in the consensus peak set across experimental states are
then compared via a process called differential binding analysis in Step (8). Like peak-
calling, differential binding analysis usually involves hypothesis testing to determine
whether the observed difference in read counts between the samples is significant.
That is, whether the observed difference in read counts across the experimental states
is greater than we would expect it to be if the difference were just due to random
chance (Love et al., 2014).

In our simulation, we use the R package DiffBind available through Bioconductor

to conduct the entirety of the data analysis workflow for differential binding from Step
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(4) to Step (8). By default, DiffBind uses DESeq2 for differential binding analysis,
which was developed specifically for sequence count data such as ChIP-Seq (Love
et al., 2014). In DESeq2, the expected read count for each peak region is found
using a negative binomial distribution (Love et al., 2014). The p-values associated
with the peaks in the consensus peak set across experimental states are then adjusted
using the Benjamini-Hochberg method to control the false discovery rate for multiple
comparisons at the pre-specified cut-off of 0.05 (the procedure for adjusted p-value
using the Benjamini-Hochberg method is described in Chapter 8). As we discuss
more in Section 5.3, in the context of ChIP-Seq differential binding analysis, the false
discovery rate is the proportion of peaks that are classified as differentially bound
that do not have differential DNA occupancy across the experimental states.
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Chapter 3

Importance of Normalization
Methods’ Technical Conditions

Normalizing between experimental states is an essential step of data analysis for differ-
ential binding. In this chapter, we use a toy example to demonstrate how ChIP-Seq
normalization methods have technical conditions and to motivate why satisfying a
normalization method’s technical conditions is necessary to draw meaningful biolog-
ical conclusions about differential DNA occupancy.

3.1 Toy Example

Imagine that there are two experimental states, which we denote as A and B. Each
experimental state only has one replicate. Moreover, three genomic regions are clas-
sified as peaks; they are denoted as Peak 1, Peak 2, and Peak 3. Figure 3.1 illustrates
the total amount of DNA occupancy per cell in each of the peaks and experimental
states in this toy example. In our toy example, like in many ChIP-Seq experiments,
we are interested in determining which peaks have differential DNA occupancy, i.e.,
have a difference in the amount of DNA occupied by the protein across experimental
states A and B.

12



Figure 3.1: Toy example: amount of DNA occupancy per cell and expected
proportional shares of DNA binding. In the left plot, the vertical axis denotes
the total amount of DNA occupancy per cell, and the horizontal axis denotes the
peak and experimental state. The right plot is the proportional shared of DNA
occupancy, i.e., the expected proportional shares of DNA binding for each peak across
experimental states A and B.

As depicted in the left plot of Figure 3.1, only Peak 3 has differential DNA occu-
pancy; there is a fold change of 1/2 in the total amount of DNA occupancy associated
with Peak 3 between experimental states A and B. Furthermore, it is important to
note that there is a different amount of total DNA occupancy (per cell) between ex-
perimental states A and B in the toy example. Indeed, Figure 3.1 shows that State
B has a higher total amount of DNA occupancy (per cell) than State A.

The right plot in Figure 3.1 breaks down the proportional shares of DNA occu-
pancy for each peak across the experimental states, i.e., the expected proportional
shares of DNA binding for each peak across the experimental states. In virtue of
there being a difference in the total amount of DNA occupancy (per cell) across the
experimental states, the fold change in the proportional shares of DNA occupancy
for each peak does not match the true fold change in the total amount of DNA occu-
pancy for each peak. For example, Peak 1 has a fold change of 4/3 in the proportional
share of DNA occupancy between experimental states A and B, even though the true
fold change in the amount of total DNA occupancy between experimental states A
and B is 1 for Peak 1. Likewise, even though there is a true fold change of 1/2 in
the total amount of DNA occupancy associated with Peak 3 between experimental
states A and B, Peak 3 only has a fold change of 2/3 in the proportional share of
DNA occupancy between experimental states A and B. Thus, in our toy example, the
difference in the expected proportional shared of DNA binding between experimental
states is not a good proxy for the differences in the total amount of DNA occupancy
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per cell between the experimental states.
However, in real-life experiments, researchers do not know the actual amount of

DNA occupancy (per cell) and how it differs between experimental states. Rather,
the amount of DNA occupancy per cell would be approximated through the number
of aligned reads to a given peak in an experimental state. Figure 3.2 provides the
reads aligned to each peak in our toy example.1 Note that, experimentally, the total
number of aligned reads is the same across the experimental states. There is no
reason that the total DNA occupancy would be the same as the total binding, given
that DNA binding is a random variable and impacted by experiment-specific features
(e.g., length of time in the sequencer and quality of the used antibody).

Figure 3.2: Toy example: reads aligned to each peak. The numbers above
each peak represent the total number of reads aligned to that peak in the given
experimental state.

Suppose we conducted differential binding analysis on the raw read counts given in
Figure 3.2. The raw read count for each peak is different between experimental states
A and B. Thus, it is likely that conducting differential binding analysis on the raw
reads given in Figure 3.2 would classify all of Peaks 1, 2, and 3 as differentially bound.
Moreover, Peak 3 would have a fold change of 12/18, or 2/3, in the amount of DNA
binding between experimental states A and B. However, this misaligns with Peak 3’s
fold change in DNA occupancy between experimental states A and B, which is 1/2
(see Figure 3.1). Therefore, normalizing the read counts between experimental states
is essential to draw accurate biological conclusions about differential DNA occupancy
from the read count data.

However, not every normalization method will be effective on our toy read count
data depicted in Figure 3.2. For example, suppose we normalize the read count data

1Note that in actual ChIP-Seq experiments, the peaks are separated (like in Figure 2.3) rather
than right new to each other as we depict in our toy example in Figure 3.2.
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with Library Size (Reads in Peaks).2 Library Size (Reads in Peaks) uses the total
number of reads aligned to the peaks as the size factor for the sample (see Equation
(4.2)). The read count for each peak in the sample is then divided by this size factor
sj to create its normalized read count (see Equation (2.1)). Thus, the normalized
read count for each peak represents its proportional share of actual DNA binding
relative to the other peaks in the experimental state under Library Size (Reads in
Peaks). Noting that the total number of reads is 36 in both experimental states in
our toy example (see Figure 3.2), we have that sA = sB = 36. Using the raw read
counts in Figure 3.2 and these size factors, we calculate the normalized read counts
and estimated fold change for Library Size (Reads in Peaks) in Table 3.1.

Norm. read
count in
State A

Norm. read
count in
State B

Est. fold change
based on norm.

read count

True fold change
based on DNA
occupancy

Peak 1 1/3 1/4 4/3 1

Peak 2 1/3 1/4 4/3 1

Peak 3 1/3 1/2 2/3 1/2

Table 3.1: Library Size (Reads in Peaks) normalized read counts and fold
changes. The columns correspond to the experimental state, estimated fold change
(based on the normalized read counts), and the true fold change based on the DNA
occupancy (per cell) depicted in 3.1. The rows correspond to the peak number. The
normalized read count for the specific peak and experimental state combination is
found by dividing the raw read count by the size factor. The estimated fold change
is then calculated by dividing the normalized read count in experimental state A by
the normalized read count in experimental state B.

By dividing each raw read count by the total number of reads in the sample,
Library Size (Reads in Peaks) posits that the changes in the proportional shares of
DNA binding between experimental states correspond to the changes in the total
amount of DNA occupancy between experimental states. However, changes in the
proportional shares of DNA binding only would track the well with changes in the total
amount of DNA occupancy when there is the same total amount of DNA occupancy
across the experimental states (see Figure 4.3 for a further illustration of this point).
Therefore, Library Size (Reads in Peaks) relies on the technical condition that there
is the same total amount of DNA occupancy (per cell) across the experimental states,
which is not met in our toy example (see Figure 3.1).

Since the technical condition underlying Library Size (Reads in Peaks) is violated
in our toy example, when we compare the normalized read count under Library Size

2Library Size (Reads in Peaks) is further described in Section 4.1.
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(Reads in Peaks) across experimental states A and B, peaks that do not have differen-
tial DNA occupancy are likely to be identified as differentially bound. Further, even
when the peaks that have differential DNA occupancy are identified as differentially
bound, the estimated fold change in DNA binding does not align with the true fold
change in DNA occupancy between experimental states. Figure 3.3 emphasizes these
points.

Figure 3.3: Toy Example: Comparing normalized read counts and fold
changes. The top plot denotes the normalized read counts associated with each
peak across experimental states A and B. The subplots going left to right correspond
to no normalization (i.e., using the raw read counts), Library Size (Reads in Peaks)
normalization, and correct normalization (i.e., normalization that returns the left plot
in Figure 3.1). The bottom plot denotes the fold change A/B for each peak based on
the normalized read counts. The subplots going left to right correspond to no normal-
ization, Library Size (Reads in Peaks) normalization, and the correct normalization.

Therefore, our toy example underscores the importance of normalizing ChIP-Seq
read count data as well as why it is important to satisfy the technical conditions
underlying a normalization method in order to draw accurate biological conclusions
about differential DNA occupancy from ChIP-Seq read count data. In the next
chapter, we will categorize various ChIP-Seq normalization methods by their technical
conditions. We then confirm our categorization by violating different combinations
of three primary technical conditions in ChIP-Seq read count simulations and assess
our empirical outcomes in Chapter 6.
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Chapter 4

Normalization Methods and their
Technical Conditions

In this chapter, we identify the primary technical conditions underlying various ChIP-
Seq between-sample normalization methods. We then categorize the normalization
methods based on the technical conditions we identified. Before we delve into the
normalization methods and their respective technical conditions, however, two key
terms must be defined:

1. Reads in Peaks Normalization: describes normalization methods that use only
the reads from the consensus peak set across experimental states (Stark and
Brown, 2011). An illustration of the observational unit for reads in peak nor-
malization methods is given in Figure 4.1.

2. Background Bin Normalization: describes normalization methods in which the
chromosomes are partitioned into large genome “bins” (that are roughly 15,000
base pairs long). The size factors are then computed from the bins (Stark and
Brown, 2011). An illustration of the observational unit for background bin
normalization methods is given in Figure 4.2.1

1Note that only chromosomes that have at least one peak in the consensus peak set across exper-
imental states are partitioned into background bins. However, we are only using one chromosome
in our simulation. So, all genomic regions belong to some background bin in our simulation (Stark
and Brown, 2011).
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Figure 4.1: Observational unit for Reads in Peaks Normalization. The ver-
tical axis represents the DNA binding, and the horizontal axis represents the genome
location of the DNA binding. The plots are partitioned based on the experimental
states A and B. The genomic regions highlighted in yellow are the ones that would be
used for Reads in Peaks Normalization. The black vertical lines denote the bound-
aries of each observational unit. Notably, the background regions (colored in black)
are not considered in Reads in Peaks Normalization.

Figure 4.2: Observational Unit for Background Bin Normalization. The ver-
tical axis represents the DNA binding, and the horizontal axis represents the genome
location of the DNA binding. The plots are partitioned based on the experimen-
tal states A and B. The genomic regions highlighted in yellow are the ones that
would be used for Background Bin Normalization. The black vertical lines denote the
boundaries of the observational unit. Notably, for Background Bin Normalization,
the genome is divided up via “mile markers,” which are roughly 15,000 base pairs
apart.
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Now that key terms have been defined, we present our categorization of popular
ChIP-Seq normalization methods by their technical conditions. Through the technical
conditions, we develop four overarching categories of normalization methods:

1. Normalization by Library Size (Section 4.1)

2. Normalization by Distribution (Section 4.2)

3. Normalization by Background (Section 4.3)

4. Normalization by Control (Section 4.4)

For each category of normalization method, we provide an overview of the cate-
gory, its primary technical conditions, popular ChIP-Seq normalization methods in
the category, and finally, the motivation for normalizing ChIP-Seq read count data
with a normalization method in that category.

4.1 Normalization by Library Size

The goal of normalization by Library Size is to remove any differences in DNA bind-
ing that are due to experimental artifacts rather than differential DNA occupancy.
Normalization by Library Size attempts to remove the differences in DNA binding
that are due to experimental artifacts by scaling each sample based on its total read
count (Dillies et al., 2012).

4.1.1 Technical Conditions

• Equal Amount of Total DNA Occupancy: the amount of total DNA oc-
cupancy is equal across the two experimental states. That is, each experimental
state has the same amount of DNA occupancy (per cell).

4.1.2 Methods

1. Library Size (Background Bins) first calculates the total raw read count in
each sample (across both peak and background regions). The sample is then
normalized by dividing the raw read count in each peak by the total raw read
count. (Dillies et al., 2012). Thus, for Library Size (Background Bins), the size
factor for sample j (i.e., sj) is equivalent to sample j’s total raw read count.
That is:

sj =
B∑
b=1

kbj (4.1)
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where B is the number of background bins in sample j and kbj is the raw read
count associated with background bin b in sample j.

2. Library Size (Reads in Peaks) is similar to Library Size (Background Bins),
but instead of summing all the raw read counts, Library Size (Reads in Peaks)
only sums the raw read counts associated with the consensus peak set across
experimental states to get the sample’s total raw peak read count. The sample
is then normalized by dividing the raw read count in each peak by the sample’s
total raw peak read count (Dillies et al., 2012). Thus, for Library Size (Reads
in Peaks), the size factor for sample j is equivalent to sample j’s total raw peak
read count. That is:

sj =
N∑
i=1

kij (4.2)

where N is the number of background bins in sample j and kij is the raw read
count associated with peak i in sample j.

3. MAnorm2 involves a two-step normalization procedure that normalizes one
sample against another (Tu et al., 2020). The first step of MAnorm2’s normal-
ization procedure is normalizing the samples within a given experimental state.
The second step is normalizing across the experimental states. Both normal-
ization steps employ the same general normalization algorithm. Namely, the
raw read count associated with a given peak in a specific sample is normalized
by applying a linear transformation to the log2 raw read count associated with
that peak in the given sample. Let kij denote the raw read count associated
with peak i in sample j. Then, in MAnorm2, the normalized read count for
peak i in sample j relative to sample l, which we denote as k∗

ij, is defined as
follows:

k∗
ij = αj + βj · log2(kij) (4.3)

Notably, unlike other considered normalization methods, MAnorm2 does not
generate a general size factor sj that is applied to the entire sample j. Instead,
each peak’s normalized read count is a linear function of its raw read count
for MAnorm2. The linear coefficients αj and βj associated with sample j in
Equation (4.3) are calculated by comparing the raw read counts associated
with the common peaks across two samples. A peak is considered a common
peak if it is called a peak under both samples (e.g., if it is a peak in both sample
j and sample l) (Tu et al., 2020).2

2In our simulation, which is described in more detail in Chapter 5, every peak is simulated as a
common peak.
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The coefficients αj and βj in Equation (4.3) are defined as follows:

αj = meani

(
log2([kl]))− βj ·meani(log2([kj]))

)
(4.4)

βj =
sdi(log2([kl]))

sdi(log2([kj]))
(4.5)

where [kj] is a vector with entries consisting of the raw read count associated
with common peak i in sample j, and sdi denotes the sample standard deviation
of the raw read counts across the common peaks i in a given sample.

By defining the coefficients αj and βj in this way, MAnorm2 forces the average
of the normalized log2 fold changes in the common peak regions across samples
j and l to be zero and the covariance between the normalized log2 fold changes
and the normalized absolute log2 signal intensities in the common peak regions
across samples j and l to be zero as well (i.e., it forces the normalized log2 fold
changes in the common peak regions and the normalized absolute log2 signal
intensities in the common peak regions to be independent of one another) (Tu
et al., 2020). Let [M∗] denote the vector of the normalized log2 fold changes
in the common peak regions across samples j and l, and [A∗] denote a vector
of the normalized absolute log2 signal intensities in the common peak regions
across samples j and l. Then, [M∗] and [A∗] are computed as follows:

[M∗] = [k∗
j ]− log2([kl]) (4.6)

[A∗] =
1

2

(
log2([kl]) + [k∗

j ]

)
(4.7)

where [k∗
j ] is a vector consisting of the normalized read counts in sample j as-

sociated with each peak i (i.e., k∗
ij), and kl is a vector consisting of the raw read

counts associated with sample l for each peak i.

Then, given how αj and βj are defined, the [M∗] and [A∗] vectors associated
with the two samples will satisfy the following set of equations under MAnorm2:

meani([M
∗]) = 0 (4.8)

covi([M
∗], [A∗]) = 0 (4.9)

Since MAnorm2 sets the average normalized log2 fold change between samples j
and l to be zero (see Equation (4.8)), MAnorm2 relies on the technical condition
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that there is an equal amount of total DNA occupancy in the common peaks
across the experimental states. Otherwise, the mean log2 fold change across the
common peaks would be skewed toward the sample that has more total DNA
occupancy in its common peaks. Indeed, Tu et al. (2020) state that MAnorm2
makes the assumption that there is “no global change” in DNA occupancy in
the common peak regions across the two samples (p. 132). Moreover, if a
sample has both common and non-common peaks, then MAnorm2 must rely on
the technical condition that the effects of experimental artifacts on the common
peaks are the same as the effects of experimental artifacts on the non-common
peaks in order to use the coefficients αj and βj to normalize each peak in sample
j via Equation (4.3).

4.1.3 Motivation

When there is the same total DNA occupancy technical condition across experimental
states, then we expect a peak to have the same proportional share of DNA binding
across the experimental states (see Figure 4.3 for an illustration of this point) and,
moreover, for the mean log2 fold change between two different samples to be zero.
Thus, insofar as there is an equal amount of total DNA occupancy across experimental
states, we would expect that peaks with different proportional shares of DNA binding
across experimental states would also have differential DNA occupancy across the
states. Likewise, when there is an equal amount of total DNA occupancy across
experimental states, the true fold change in the amount of DNA occupancy between
experimental states would have a mean of zero.
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Figure 4.3: Illustration of Normalization by Library Size. The left plot rep-
resents the true DNA occupancy per cell, and the right plot represents the expected
proportional share of DNA binding (i.e., the proportional shares of DNA occupancy).
For both plots, the horizontal axis denotes the experimental state (i.e., A or B). In the
left plot, the vertical axis represents the DNA occupancy per cell. In the right plot,
the vertical axis represents the proportional share of DNA binding. Note that the
amount of DNA occupancy across experimental states is equal. Thus, if ChIP-Seq
data was repeatedly collected, we would expect that, on average, the proportional
share of DNA binding in a given peak would match the proportional share of DNA
occupancy per cell in that peak. For example, Peak 3 has an A/B fold change of 2/3
in the total DNA occupancy per cell in the left plot, as well as an A/B fold change
of 2/3 in the expected proportional shared of DNA binding in the right plot.

4.2 Normalization by Distribution

Normalization by Distribution works by comparing some aspect of the distribution
of read counts (or a function of read counts) across experimental states in order to
calculate the size factor for each sample. If the effects of experimental artifacts on
the peaks with differential DNA occupancy and without differential DNA occupancy
are the same, then we can normalize the entire sample by comparing the read counts
in the peaks that are estimated to not have differential DNA occupancy across the
experimental states.
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4.2.1 Technical Conditions

• Peaks with Differential DNA Occupancy and Peaks without Differ-
ential DNA Occupancy Behave the Same: the effects of experimental
artifacts on peaks with differential DNA occupancy are the same as the effects
of experimental artifacts on peaks without differential DNA occupancy.

• Symmetric Differential DNA Occupancy: there is roughly symmetric dif-
ferential DNA occupancy across experimental states. That is, the number of
peaks with more DNA occupancy in one experimental state is equal to the
number of peaks with more DNA occupancy in the other experimental state.

4.2.2 Methods

1. TMM (Reads in Peaks) or “Trimmed Mean of the M-values for Reads in
Peaks” first selects a reference sample to be the basis of comparison for the
other samples. Then, the log2 fold change of signal magnitudes and the abso-
lute signal magnitudes for each peak in the consensus peak set, relative to this
reference sample, are calculated (Robinson and Oshlack, 2010).

Let kij be the raw read count associated with peak i in sample j and Nj be the
total number of reads associated with the consensus peak set in sample j (i.e.,
Nj =

∑
i kij). Finally, let r denote the sample selected as the reference. Then,

the log2 fold change for peak i in sample j, relative to reference r, is defined as:

M r
ij =

log2(kij/Nj)

log2(kir/Nr)
(4.10)

While, the log2 absolute signal magnitude for peak i in sample j, relative to
reference r, is defined as:

Ar
ij =

1

2
log2

(
kij
Nj

· kir
Nr

)
(4.11)

The M r
ij and Ar

ij values are trimmed twice such that only peaks with central M r
ij

and Ar
ij values remain (Robinson and Oshlack, 2010). The purpose of trimming

the M r
ij and Ar

ij values is to approximate the set of peaks without differential
DNA occupancy. However, for trimming the M r

ij and Ar
ij values to accurately

approximate the set of peaks without differential DNA occupancy, there must
be symmetric differential DNA occupancy across the experimental states. We
will refer to the set of peaks remaining after the trimming as Q. The set Q is
used to calculate the size factor for sample j (i.e., sj), which is scaled by the
reference sample r:
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log2(sj) =

∑
i∈Qwr

ijM
r
ij∑

i∈Qwr
ij

(4.12)

where,

wr
ij =

Nj − kij
Njkij

+
Nr − kir
Nrkir

(4.13)

Thus, TMM (Reads in Peaks) calculates the size factor for sample j using only
features about peaks in set Q, which aims to estimate the set of peaks that do
not have differential DNA occupancy across the experimental states. Therefore,
TMM (Reads on Peaks) relies on the effects of experimental artifacts on the
peaks without differential DNA occupancy, which is the same as the effects of
experimental artifacts on the peaks with differential DNA occupancy.

2. RLE (Reads in Peaks) or “Relative Log Expression for Reads in Peaks”
begins by finding the ratio between the raw read count associated with peak i
in a given sample and the geometric mean of the raw read count associated with
peak i across all the samples. The process of calculating the ratio between the
raw read count and the geometric mean of the raw read counts is repeated until
a ratio has been generated for every peak in the consensus peak set. Then, the
median ratio is computed for each sample and serves as its size factor. The size
factor is applied to the raw read count in each peak to normalize the sample
(Love et al., 2014). Then, the size factor for sample j (sj) under RLE (Reads
in Peaks) is calculated as follows:

sj = mediani

(
kij

(
∏m

l=1 kil)
1/m

)
(4.14)

where kij is the raw read count associated with peak i in sample j and m is the
total number of samples across all experimental states.

In Equation (4.14), the denominator is the genomic mean of the raw read counts
associated with peak i across all the samples. This geometric mean serves as
the read count associated with peak i in a pseudo-reference sample (Love et al.,
2014). The read count for each peak in the pseudo-reference sample is compared
to the raw read count associated with peak i in sample j (i.e., kij). Next, the
median ratio of the raw read counts is taken across all the peaks. The purpose of
taking the median ratio is to approximate a ratio that is associated with a peak
that does not have differential DNA occupancy (Love et al., 2014). So, RLE
(Reads in Peaks) relies on the assumption that the median peak will not have
differential DNA occupancy across the experimental states. However, when
there is asymmetric DNA occupancy coupled with a high proportion of peaks
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with differential DNA occupancy, the median peak might have differential DNA
occupancy. Thus, RLE (Reads in Peaks) relies on the technical condition that
there is symmetric differential DNA occupancy across the experimental states
to generate samples’ size factors (Love et al., 2014). Moreover, given that RLE
(Reads in Peaks) generates each sample’s size factor by approximating a peak
without differential DNA occupancy, it follows that RLE (Reads in Peaks) also
relies on the technical condition that peaks without differential DNA occupancy
behave the same as peaks with differential DNA occupancy.

4.2.3 Motivation

Normalization by Distribution posits that we can estimate the size factor for a sample
by using by using a measure of center, such as the median, to estimate peaks that do
not have differential DNA occupancy. Moreover, if the effects of experimental artifacts
on the peaks that have differential DNA occupancy are the same as the effects of
experimental artifacts on the peaks that do not have differential DNA occupancy,
then we can normalize the entire sample based on the size factor that is calculated
by estimating the peaks that do not have differential DNA occupancy across the
experimental states.

4.3 Normalization by Background

Normalization by background first partitions the genome into long segments that are
roughly 15,000 base pairs long (Stark and Brown, 2011). These long genomic regions
are referred to as background bins. For Normalization by Background, the background
bins, rather than the peaks in the consensus peak set across experimental states, then
serve as the unit of normalization (see Figure 4.2).

4.3.1 Technical Conditions

• Previous Technical Conditions: the aforementioned technical conditions for
any given method must be met by the background bins across the experimental
states.

• Same Total Amount of Background Binding: the number of rogue reads
is the same across experimental states.

4.3.2 Methods

1. Library Size (Background Bins) normalization with Library Size (Back-
ground Bins) is described in Section 4.1. To summarize: a sample is normalized
using Library Size (Background Bins) by dividing the raw read count associated
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with each peak by the total raw read count summed over the background bins
(Dillies et al., 2012).

2. TMM (Background Bins) or “Trimmed Mean of the M-values using Back-
ground Bins” works very similarly to TMM (Reads in Peaks). It first selects a
reference sample to be the basis of comparison for the other samples. Then, the
fold changes and absolute signal magnitudes relative to the reference sample
are calculated and used to normalize the raw read counts associated with each
peak in the sample (Robinson and Oshlack, 2010). The major difference be-
tween TMM (Reads in Peaks) and TMM (Background Bins) is the unit used for
normalization. In TMM (Background Bins), the units used for normalization
are the sample’s background bins rather than its peaks.

Let the log2 fold change for background bin b between sample j and the reference
sample r be denoted as M r

bj. Further, let kbj denote the reads aligned to bin b
in replicate j, and Nj denote the total number of reads aligned to replicate j.
Likewise, let kbr denote the reads aligned to bin b in the reference replicate r
and Nr denote the total number of reads aligned to reference replicate r. Then,
M r

bj is defined as follows:

M r
bj =

log2 (kbj/Nj)

log2(kbr/Nr)
(4.15)

While, the absolute signal magnitude for background bin b in sample j, which
we denote as Ar

bj, is defined as:

Ar
bj =

1

2
log2

(
kbj
Nj

· kbr
Nr

)
(4.16)

Like with TMM (Reads in Peaks), the M r
bj and Ar

bj are trimmed twice. As a
result, only background bins with central M r

bj and Ar
bj values remain (Robinson

and Oshlack, 2010). The purpose of trimming the M r
bj and Ar

bj values is so
that only the background bins with approximately the same amount of DNA
binding across experimental states are used to generate the sample’s size fac-
tor. Yet, when there is a different total amount of background binding across
experimental states, background bins can have high M r

bj and Ar
bj, even if there

is no difference in the total DNA occupancy across the experimental states in
the background bin. Thus, TMM (Background Bins) relies on the technical
condition that there is the same total amount of background binding across
the experimental states. We denote the set of background bins left after the
two rounds of trimming as Qb. The set Qb is used to create the size factor for
replicate j, scaled by reference r (i.e., sj) that can be applied to the raw read
count for each peak i in sample j:

27



log2(sj) =

∑
i∈Qb

wr
bjM

r
bj∑

i∈Qb
wr

bj

(4.17)

where,

wr
bj =

Nj − kbj
Njkbj

− Nr − kbr
Nrkbr

(4.18)

3. RLE (Background Bins) or “Relative Log Expression using Background
Bins” uses the same procedure as RLE (Reads in Peaks), but instead of peaks,
background bins are the unit used for normalization. RLE (Background Bins)
begins by calculating a ratio between the raw read counts for a specific back-
ground bin and the geometric mean of the read count associated with the same
background bin across all of the samples (Love et al., 2014). The median ratio
then serves as the size factor for the sample. That is, the size factor for sample
j (sj) under RLE (Background Bins) is calculated as follows:

sj = medianb

(
kbj

(
∏m

l=1 kbl)
1/m

)
(4.19)

where kbj is the read count associated with background bin b in replicate j and
m is the total number of replicates across all experimental states.

The purpose of taking the median ratio over all the background bins is to ap-
proximate a background bin where there is no difference in DNA occupancy
between the experimental states (Love et al., 2014). However, when there is
a difference in the amount of total background binding between experimen-
tal states, background bins that do not have differences in DNA occupancy
between experimental states do have differences in DNA binding between ex-
perimental states. As a result, the median ratio might not return a background
bin where there is the same amount of DNA occupancy between experimental
states when if is a difference in the total amount of background binding across
the experimental states. Therefore, RLE (Background Bins) also relies on the
technical condition that there is an equal amount of background binding across
the experimental states.

4.3.3 Motivation

Given that peaks are usually only a few hundred base pairs long, we would not
expect to identify a (non-trivial) global change in the DNA occupancy (per cell) in
the background bins across the experimental states (Stark and Brown, 2011). Hence,
any observed difference in the amount of DNA binding is expected to be the result of
experimental artifacts rather than true biological differences in the amount of DNA
occupancy per cell between the experimental states. So, it is beneficial to generate
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a sample’s size factor by leveraging features of its background bins rather than its
peaks.

4.4 Normalization by Controls

When the technical conditions listed in Sections 4.1.1, 4.2.1, and 4.3.1 are violated,
Normalization by Controls can enable us to properly normalize between ChIP-Seq
samples. Normalization by Controls works by generating the size factors using con-
trol peaks. Control peaks are peaks where we have a priori knowledge of the DNA
occupancy behavior (Bonhoure et al., 2014). A common type of control peak is a
negative control. In a negative control, we would expect any differences in the DNA
binding across experimental states in the control peak region to be the result of
experimental artifacts rather than differences in DNA occupancy (Bonhoure et al.,
2014).

4.4.1 Technical Conditions

• Existence of Controls: the controls needed for the experiment exist, and
their DNA occupancy behavior is what we understand it to be (e.g., a negative
control).

• Controls Behave like Peaks: the effects of experimental artifacts on the
control peaks reflect the effects of experimental artifacts on all the peaks.

• Previous Technical Conditions: the aforementioned technical conditions for
any given normalization method must be met by the control.

4.4.2 Methods

1. Spike-in Normalization works by modifying the ChIP-Seq data collection
procedure. Namely, before immunoprecipitation is done, chromatin from an-
other organism is injected into each sample. The peaks resulting from the
spiked-in chromatin are then used to generate the size factors for the entire
sample using a normalization method, like those we previously described (e.g.,
TMM (Reads in Peaks), RLE (Reads in Peaks), Library Size (Reads in Peaks)).
The choice of which normalization method is ultimately based on our a priori
knowledge of the DNA occupancy behavior for the spike-in control. Given that
the size factor calculated through the spiked-in peaks is applied to all the peaks,
spike-in normalization relies on the technical condition that the experimental
artifacts have the same effect on the spiked-in peaks and the peaks of interest.
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Figure 4.4 provides a cartoon example of Spike-in Normalization.3

Figure 4.4: Spike-in Normalization Illustration. The vertical axis represents
the number of reads associated with different regions on the genome. The spiked-in
control peak in this cartoon example is colored orange. Here, the spiked-in peak
serves as a negative control. Thus, we would expect there to be the same number of
reads in the spiked-in peak across conditions A and B. We would use the fact that the
spike-in control is a negative control to create a size factor using some normalization
method like TMM (Reads in Peaks). The calculated size factor would then be applied
to the entire sample to normalize the peaks of interest in that sample.

4.4.3 Motivation

Unlike for the peaks of interest, we have an a priori understanding of the spiked-in
controls’ DNA occupancy behavior across the experimental states (Bonhoure et al.,
2014). So, if the DNA binding across experimental states misaligns with what we
expect, then we can take this misalignment to be the result of experimental artifacts
rather than differences in DNA occupancy. If the effects of experimental artifacts
on the peaks of interest are equivalent to the effects of experimental artifacts on the
control peaks, then we can apply the size factor calculated using the spike-in control
peaks to the entire sample.

3Unlike in the illustration provided in Figure 4.4, there are usually several such spiked-in peaks
in real-life experiments rather than just one.
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Chapter 5

Simulation Preliminaries

We use simulated ChIP-Seq read count data to assess our categorization of the pop-
ular ChIP-Seq normalization methods given in Chapter 4. We chose to simulate the
ChIP-Seq read count data rather than use real ChIP-Seq read count data for two pri-
mary reasons. First, unlike with experimental data, we are omniscient about which
peaks have differential DNA occupancy in simulated data. Second, we are also om-
niscient about which combination of the technical conditions are being violated in
simulated ChIP-Seq read count data. As such, simulating ChIP-Seq read count data
enables us to more accurately estimate the effects of violating various combinations of
technical conditions on various ChIP-Seq normalization methods. However, there are
also shortcomings to simulating rather than using real data. Notably, we cannot re-
alistically approximate spike-in control peaks in our ChIP-Seq read count simulation
because our simulation does not presume characteristics about the protein of interest,
chromosome, or the kind of antibody used for immunoprecipitation. So, we cannot
realistically simulate spike-in controls that are sensitive to such characteristics.

Following the work of Anders and Huber (2010) as well as Lun and Smyth (2016),
we use a negative binomial distribution to simulate the total read count in a given
peak. The mean read count for peak i in sample j (i.e., µij) in the negative binomial
distribution for the read count is simulated to be the following:

µij =
pij · (fc)ij
(basesum)j

· (library multiplier)j · 600, 000 (5.1)

In Equation (5.1), 600, 000 serves as our base number of aligned reads in a given
sample (i.e., library size), which is then multiplied by a scalar (i.e., (library multiplier)j)
in order to calculate the total number of aligned reads for the specific sample j in
our simulation. The (library multiplier)j term is added to account for the fact that
sometimes the total library size of samples is different in virtue of experimental arti-
facts, e.g., leaving one sample in the sequencer for longer than another. Like Evans
et al. (2016), we simulate (library multiplier)j by using a truncated normal distribu-
tion with a mean of 1, a standard deviation of 0.2, and an upper and lower bound
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of 1.4 and 0.6, respectively. In Equation (5.1), pij denotes the proportional share
of DNA occupancy in peak i in sample j before we simulate differential DNA oc-
cupancy. We calculate pij by dividing the total number of aligned reads in sample
j (i.e., (library multiplier)j · 600, 000) by the total number of peaks in the sample.
Differential DNA occupancy is then simulated by multiplying each peak i in sampler
j by (fc)ij, which represents the fold change in DNA occupancy for peak i in sample
j relative to a sample in a different experimental state. Notably, when a peak does
not have differential DNA occupancy between experimental states, (fc)ij will be one.
Finally, the value (basesum)j is defined as the dot product of [pj], which is a column
vector consisting of the original proportional share of DNA occupancy (i.e, pij), and
[(fc)j]

⊺, which is a row vector consisting of the multiplicative change in the amount of
DNA occupancy per cell in peak i between experimental states A and B (i.e., (fc)ij).
Equation (5.2) provides the formula for calculating the basesum for sample j using
[pj] and [(fc)j].

(basesum)j = [(fc)j]
⊺ · [pj] (5.2)

To further elucidate how the basesum for a given sample is calculated, let us sup-
pose we had three peaks in two samples denoted as A and B. In this example, [pA] =
[pB] = [1/3, 1/3, 1/3]. Moreover, [(fc)A] = [1, 1, 1] and [(fc)B] = [1, 1, 2], meaning
that only the third peak has differential DNA occupancy, with two times more DNA
occupancy in B than A. Using Equation (5.2), it follows that (basesums)A = 1 and
(basesums)B = 4/3. We will build upon this simple example in the next section when
we illustrate the Oracle normalization method in Figure 5.1.

5.1 The Oracle Normalization Method

Under ideal circumstances, perfect normalization would entail that all and only the
peaks that have differential DNA occupancy are classified as differentially bound.
However, peaks can be classified as differentially bound even though the peak does not
have differential DNA occupancy due to other steps in the differential binding analysis
workflow beyond between-sample normalization (e.g., a peak with differential DNA
occupancy might not be called in Step (4), or differential binding analysis generates
a high adjusted p-value to a peak with differential DNA occupancy in Step (8)).
Therefore, a normalization method might still be performing well even if some peaks
that have differential DNA occupancy are not classified as differentially bound or,
likewise, if there are many peaks that are classified as differentially bound that do not
have differential DNA occupancy. As such, we develop an omniscient normalization
method, which we refer to as the Oracle, to serve as our basis of comparison in
the simulation results. The Oracle size factor for sample j in a given simulation
iteration is defined as follows, where m is the total number of samples across the two
experimental states:
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sj =
(normFactor)j∏m

h=1 (normFactor)h
(1/m)

(5.3)

where,

(normFactor)j =
(library multiplier)j

(basesum)j
(5.4)

Importantly, when we divide the mean read count for peak i under sample j
(i.e., µij) by the normalization factor for sample j (i.e., (normFactor)j), we get the
following:

µij

(normFactor)j
= pij · (fc)ij · 600, 000 (5.5)

Since pij (i.e., the base proportion of DNA occupancy in peak i in sample j)
and 600, 000 (i.e., the base library size) are constant across different samples in our
simulation, the only value that changes in Equation (5.5) between experimental states
is (fc)ij, i.e., the fold change in DNA occupancy for peak i in sample j relative to a
sample in the other experimental state. Therefore, when we compare read counts that
are normalized by the Oracle across experimental states, we are directly estimating
the fold change in DNA occupancy across experimental states, i.e., differential DNA
occupancy. Equation (5.3) simply standardizes the normalization factor for sample
j relative to the other samples’ size factors by dividing the normalization factor for
sample j by the geometric mean of the normalization factors. Our toy example
illustrated in Figure 5.1 further demonstrates how the Oracle successfully normalizes
raw read count data by leveraging each sample’s basesum and library multiplier.

33



Figure 5.1: Illustration of Oracle Normalization Method. In our toy example,
there are two experimental states, A and B, and three peaks in each experimental
state, denoted as 1,2, and 3. The library multipliers for State A and State B are
0.9 and 0.8, respectively. Plot (a) represents the DNA occupancy (per cell) for each
peak in States A and B. Plot (b) is the corresponding basesums for States A and B.
Plot (c) provides the proportional shares of DNA occupancy for the peaks for States
A and B. The raw read counts are generated through the general process outlined in
Equation (5.1) and are depicted in Plot (d). Using the raw read counts, Peaks 1 and
2 appear differentially bound even though they do not have different DNA occupancy
in Plot (f). Additionally, even though Peak 3 has 1/2 as much DNA occupancy
in State A as compared to B in Plot (a), it appears to have 2/3 as much in Plot
(f). Note that when we normalize our toy data using the Oracle, the fold changes
associated with the Oracle normalized read counts in Plot (e) match the true fold
changes in the DNA occupancy between the states depicted in Plot (f).
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We can find the Oracle normalization factors associated with States A and B in
our toy example in Figure 5.1 by using Equation (5.4) and leveraging that the library
multipliers for State A and State B are 0.9 and 0.8, respectively.

(normFactor)A =
0.9

1
= 0.9 (5.6)

(normFactor)B =
0.8
4
3

= 0.6 (5.7)

Then, we can find the Oracle size factor for each experimental state by using
Equation (5.3).

sA =
0.9√

0.6 · 0.9
= 1.2247 (5.8)

sB =
0.6√

0.6 · 0.9
= 0.8165 (5.9)

Dividing the raw read counts for States A and B (given in Plot (d) of Figure 5.1)
by their respective Oracle size factors of 1.04447 and 0.95743 gives us the Oracle nor-
malized read counts given in Plot (e) of Figure 5.1. Table 5.1 shows the calculations
for the oracle normalized read counts.

Norm. read count state A Norm. read count state B

Peak 1 54/1.2247 = 44.0906 36/0.8165 = 44.0906

Peak 2 54/1.2247 = 44.0906 36/0.8165 = 44.0906

Peak 3 54/1.2247 = 44.0906 72/0.8165 = 88.1812

Table 5.1: Oracle Normalized Read Counts. The columns correspond to the
experimental state associated with the raw read count, and the rows correspond to
the peak associated with the raw read count. Each entry is the Oracle normalized
read count for the specific peak, which is found by multiplying the raw read count
depicted in Plot (d) of Figure 5.1 by the size factors calculated in Equations (5.8)
and (5.9).

Using the Oracle normalized read counts computed in Table 5.1, we would con-
clude that Peaks 1 and 2 are not differentially bound and that Peak 3 is differentially
bound, with two times more DNA binding in State B than State A. As shown in Plots
(e) and (f) of Figure 5.1, the Oracle-normalized DNA binding results perfectly align
with the amount of DNA occupancy (per cell) depicted in Plot (a) of Figure 5.1.
Therefore, our toy example demonstrates that our Oracle normalization method is
omniscient and, thus, will serve as an effective basis for comparison with other nor-
malization methods in our simulation.
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5.2 Simulation Conditions

In each simulation, we have two different experimental states (which we refer to
as A and B) and four replicates within each experimental state. We only simulate
transcription factor binding, which is known to generate narrower and taller peaks
than other proteins (e.g., histone modifications) (Lun and Smyth, 2016). In our ChIP-
Seq simulation, we violate every combination of the following technical conditions:

1. Symmetric Differential DNA Occupancy: there is roughly symmetric dif-
ferential DNA Occupancy across experimental states. That is, there is the same
number of regions with more DNA occupancy in one experimental state than
another across the experimental states.

2. Same Total DNA Occupancy: the amount of total DNA occupancy is the
same across the experimental states. That is, each experimental state has the
same amount of DNA occupancy per cell.

3. Same Total Amount of Background Binding: the number of rogue DNA
binding is the same across the two experimental states.

As such, we have eight unique simulation conditions in total. In what follows,
we provide more details about each simulation condition. Table 5.2 and 5.2 further
elucidate the simulation conditions.

Symmetry, Equal DNA Occupancy, Equal Background Binding:

• Peaks: 50% of the peaks that have differential DNA occupancy have 2 times
more DNA occupancy in experimental state A. The other 50% of the peaks
that have differential DNA occupancy have 2 times more DNA occupancy in
experimental state B.

• Background: The amount of background binding within each background bin
is, on average, 50% of the total DNA occupancy for a peak that does not have
differential DNA occupancy in both experimental states. The total amount of
background binding is uniformly distributed over the background bins in each
sample.

Symmetry, Different DNA Occupancy, Equal Background Binding

• Peaks: 50% of the peaks with differential DNA occupancy have 4 times more
DNA occupancy in experimental state A. The other 50% of the peaks with
differential DNA occupancy have 2 times more DNA occupancy in experimental
state B.
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• Background: The amount of background binding within each background bin
is, on average, 50% of the total DNA occupancy for a peak that does not have
differential DNA occupancy in both experimental states. The total amount of
background binding is uniformly distributed over the background bins in each
sample.

Asymmetry, Equal DNA Occupancy, Equal Background Binding

• Peaks: 12.5% of the peaks with differential DNA occupancy have 8 times more
DNA occupancy in experimental state A. The other 87.5% of the peaks with
differential DNA occupancy have 2 times more DNA occupancy in experimental
state B.

• Background: The amount of background binding within each background bin
is, on average, 50% of the total DNA occupancy for a peak that does not have
differential DNA occupancy in both experimental states. The total amount of
background binding is uniformly distributed over the background bins in each
sample.

Asymmetry, Different DNA Occupancy, Equal Background Binding

• Peaks: 12.5% of the peaks with differential DNA occupancy have 2 times more
DNA occupancy in experimental state A. The other 87.5% of the peaks with
differential DNA occupancy have 2 times more DNA occupancy in experimental
state B.

• Background: The amount of background binding within each background bin
is, on average, 50% of the total DNA occupancy for a peak that does not have
differential DNA occupancy in both experimental states. The total amount of
background binding is uniformly distributed over the background bins in each
sample.

Symmetry, Equal DNA Occupancy, Different Background Binding

• Peaks: 50% of the peaks with differential DNA occupancy have 2 times more
DNA occupancy in experimental state A. The other 50% of the peaks with
differential DNA occupancy have 2 times more DNA occupancy in experimental
state B.

• Background: The amount of background binding within each background bin
is set to be, on average, 50% of the total DNA occupancy for a peak that does
not have differential DNA occupancy in experimental state A and 25% of the
DNA occupancy in a peak that does not have differential DNA occupancy in
experimental state B. The total amount of background binding is uniformly
distributed over the background bins in each sample.
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Symmetry, Different DNA Occupancy, Different Background Binding

• Peaks: 50% of the peaks with differential DNA occupancy have 4 times more
DNA occupancy in experimental state A. The other 50% of the peaks with
differential DNA occupancy have 2 times more DNA occupancy in experimental
state B.

• Background: The amount of background binding within each background bin
is set to be, on average, 50% of the total DNA occupancy for a peak that does
not have differential DNA occupancy in experimental state A and 25% of the
DNA occupancy in a peak that does not have differential DNA occupancy in
experimental state B. The total amount of background binding is uniformly
distributed over the background bins in each sample.

Asymmetry, Equal DNA Occupancy, Different Background Binding

• Peaks: 12.5% of the peaks with differential DNA occupancy have 4 times more
DNA occupancy in experimental state A. The other 87.5% of the peaks with
differential DNA occupancy have 2 times more DNA occupancy in experimental
state B.

• Background: The amount of background binding within each background bin
is set to be, on average, 50% of the total DNA occupancy for a peak that does
not have differential DNA occupancy in experimental state A and 25% of the
DNA occupancy in a peak that does not have differential DNA occupancy in
experimental state B. The total amount of background binding is uniformly
distributed over the background bins in each sample.

Asymmetry, Different DNA Occupancy, Different Background Binding

• Peaks: 12.5% of the peaks with differential DNA occupancy have 2 times more
DNA occupancy in experimental state A. The other 87.5% of the peaks with
differential DNA occupancy have 2 times more DNA occupancy in experimental
state B.

• Background: The amount of background binding within each background bin
is set to be, on average, 50% of the total DNA occupancy for a peak that does
not have differential DNA occupancy in experimental state A and 25% of the
DNA occupancy in a peak that does not have differential DNA occupancy in
experimental state B. The total amount of background binding is uniformly
distributed over the background bins in each sample.
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Symmetric Equal
DNA occ.

% with
more DNA
occ. in A

% with
more DNA
occ. in B

fold
change

A

fold
change

B

✓ ✓ 50% 50% 2 2

✓ X 50% 50% 4 2

X ✓ 12.5% 87.5% 8 2

X X 12.5% 87.5% 2 2

Table 5.2: Summary of Peaks Simulation Conditions. The breakdown of the
percent of peaks with differential DNA occupancy that have more DNA occupancy
in experimental states A and B, as well as the fold change in such peaks between the
experimental states based on whether there is symmetric differential DNA occupancy
(i.e., symmetry) and equal total DNA occupancy in the simulation condition.

Figure 5.2: Illustration of the Asymmetry, Different DNA Occupancy, and
Different Background Binding Simulation Condition. The vertical axis rep-
resents the DNA binding (i.e., read count), and the horizontal axis represents the
location of the region on the genome. There is only one peak (colored green) sim-
ulated to have more DNA binding in state A than B, whereas three peaks (colored
yellow) are simulated to have more DNA binding in State B than in State A. There-
fore, the differential DNA occupancy is asymmetric across experimental states. The
total DNA binding in the peak regions (i.e., the sum of the yellow, green, and orange
regions) is simulated to be greater in State B than in State A. Therefore, there is a
difference in total DNA occupancy across the experimental states. Finally, the overall
background binding (colored black) is greater in state B than in state A. Hence, there
is a difference in total background binding across the experimental states.
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Another crucial aspect of our simulation is that we also vary the proportion of
peaks with differential DNA occupancy between 0.05 and 0.95 with a step size of 0.05.
We ran the simulation one hundred times (i.e., we generated one hundred independent
datasets) for each combination of the simulation conditions and proportion of peaks
with differential DNA occupancy.

5.3 Simulation Metrics

For every simulated condition and proportion of peaks with differential DNA occu-
pancy, we calculate three metrics for each between-sample normalization method.
First, we find the average false discovery rate associated with each normalization
method. The false discovery rate (FDR) for a single simulation iteration and nor-
malization method is calculated as follows, where NDB denotes the number of peaks
classified as differentially bound:

FDR =
NDB of those with differential DNA occupancy

NDB

(5.10)

In our simulation, we set the FDR cut-off to 0.05. Hence, the p-values are adjusted
using the Benjamini-Hochberg method using the 0.05 cut-off, and only peaks with
adjusted p-values below 0.05 are considered differentially bound. Given that we set
the FDR cut-off to be 0.05, we will judge the ability of different normalization methods
to control the average FDR at a level of 0.05 in our simulation.

The second metric we find is the average power associated with each normalization
method. The power for a single simulation iteration and normalization method is
calculated as follows (NDB still denotes the number of peaks classified as differentially
bound):

Power =
NDB of those with differential DNA occupancy

Number of peaks with differential DNA occupancy
(5.11)

Given that the Oracle normalization method serves as the basis of comparison in
our simulation, the third simulation metric directly compares the size factors gener-
ated by other normalization methods to the Oracle’s size factor. We call this metric
the Average Absolute Size Factor Ratio relative to the Oracle (i.e., AASFRO). To
calculate AASFRO for a given normalization method, we first need to calculate the
Absolute Size Factor Ratio relative to the Oracle (i.e., ASFRO) for each sample. Let
sjem denote the size factor for sample j under experimental state e for some normal-
ization method m within a given simulation iteration. Let oje denote the Oracle’s
size factor for sample j under experimental state e for that same simulation itera-
tion. Then, the absolute size factor ratio relative to the Oracle for sample j under
experimental state e for the normalization method m (i.e., (ASFRO)jem) in a given
simulation iteration is defined as follows:
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(ASFRO)jem =

{
sjem
oij

if
sjem
oje

≥ 1
oje
sjem

otherwise
(5.12)

By splitting the calculation of (ASFRO)jem into the cases outlined in Equation
(5.12), we ensure that (ASFRO)jem is always greater than one and thus the absolute
size factor ratio relative to the Oracle. After we calculate (ASFRO)jem, we calcu-
late the average absolute size factor ratio relative to the Oracle under normalization
method m for a given simulation iteration, which we abbreviate as (AASFRO)m:

(AASFRO)m =
1

Ne ·Nj

·
∑
e

(∑
j

(ASFRO)jem

)
(5.13)

where Ne is the number of samples in experimental state e, and Ne is the total
number of experimental states in a simulation iteration, which is always 2 in the
simulation results we present in the next chapter.
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Chapter 6

Simulation Results

In this chapter, we present our simulation results under different simulation condi-
tions, focusing on the three metrics we described in Section 5.3: (1) false discovery
rate, (2) power, and (3) the average absolute size factor ratio relative to the Oracle
(i.e., AASFRO). We created our ChIP-Seq read count data simulation by expanding
on code from Lun and Smyth (2016) as well as (Evans et al., 2016). Our code to run
our simulations and generate the figures we present in this chapter is available in our
GitHub repository.

6.1 General Simulation Results

We first examine how the average false discovery rate and power for different normal-
ization methods change over the proportion of peaks with differential DNA occupancy
across all eight simulation conditions. Figure 6.1 demonstrates how the average false
discovery rate changes over the proportion of peaks with differential DNA occupancy
for all eight simulation conditions. Meanwhile, Figure 6.2 demonstrates how the av-
erage power changes over the proportion of peaks with differential DNA occupancy
for all eight simulation conditions. Note that the average false discovery rate will
naturally go down as we have a higher proportion of peaks with differential DNA
occupancy because there are fewer peaks that can be classified as differentially bound
that do not have differential DNA occupancy. Likewise, the average power naturally
increases as the proportion of peaks with differential DNA occupancy increases be-
cause there are fewer peaks that can classified as differentially bound that do not
have differential DNA occupancy. In the appendix, we include versions of Figures 6.1
and 6.2 with 95% confidence interval bands around the average metric values for each
normalization method.
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Figure 6.1: Average false discovery rate under different simulation condi-
tions. The average false discovery rate for each normalization factor, faceted by
simulation condition. The horizontal axis is the proportion of peaks that have differ-
ential DNA occupancy, and the vertical axis is the average false discovery rate. Note
that the scale of the vertical axis changes between the subplots in the top and bottom
rows. Each plot has a black horizontal line at 0.05. When a curve is below that black
line, then the associated normalization method (on average) successfully controls the
false discovery rate at a level of 0.05 for the given proportion of peaks with differential
DNA occupancy. We consider normalization methods that track with the Oracle (the
solid red line) to be doing well with respect to controlling the average false discovery
rate.

In Figure 6.1, we see that when all technical conditions are met (Plot (a)), all
normalization methods track closely with the Oracle and control the average false
discovery rate at a level of 0.05. However, once we violate some of the technical con-
ditions, some normalization methods start to diverge from the Oracle. For example,
in Plot (c) of Figure 6.1, the average false discovery rate becomes much higher for
TMM (Reads in Peaks) and RLE (Reads in Peaks) than the Oracle and the 0.05 cut-
off as the proportion of peaks with differential DNA occupancy increases. Crucially,
TMM (Reads in Peaks) and RLE (Reads in Peaks) perform poorly with respect to
controlling the average false discovery rate whenever asymmetric differential DNA
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occupancy is violated (see also Plots (d), (g), (h) in Figure 6.1), and especially so
when there is a high proportion of peaks with differential DNA occupancy. Thus,
our simulation results indicate that both TMM (Reads in Peaks) and RLE (Reads
in Peaks) do a poor job of controlling the average false discovery rate when symmet-
ric DNA occupancy is violated, confirming that TMM (Reads in Peaks) and RLE
(Reads in Peaks) rely on the technical condition that there is a symmetric amount of
differential DNA occupancy across experimental states.

Moreover, when there is a different total amount of total DNA occupancy across
experimental states (see Plots (b), (d), (f), (h) of Figure 6.1), several methods
do a poor job of controlling the average false discovery rate. In particular, Library
Size (Reads in Peaks), MAnorm2, Library Size (Background Bins), RLE (Background
Bins), and TMM (Background Bins) all have an average false discovery rate that is
much higher than the 0.05 threshold, and the Oracle’s. These results confirm that
Library Size (Reads in Peaks), Library Size (Background Bins), and MAnorm2 all
rely on the technical condition that there is an equal amount of total DNA occupancy
across the experimental states.

Further, in virtue of how bins are defined (see Figure 4.2), a substantial difference
in the total amount of DNA occupancy in the peaks can lead to the same background
bin having different total amounts of DNA binding across the experimental states.
This explains why we see that TMM (Background Bins) and RLE (Background Bins)
also perform poorly when there is a difference in total DNA occupancy even when
there is not a difference in the total amount of background binding across experimental
states (e.g., in Plot (b) of Figure 6.1). Additionally, TMM (Background Bins), RLE
(Background Bins), and Library (Background Bins) also do a poor job of controlling
the average false discovery rate, relative to the 0.05 cut-off as well as the Oracle when
there is a different amount of background binding across conditions (see Plots (e),
(f), (g), (h) in Figure 6.1). Hence, our simulation results validate that Library Size
(Background Bins), TMM (Background Bins), and RLE (Background Bins) rely on
the technical condition that there is an equal amount of total background binding
across the experimental states.

However, it is also important to examine how violating the primary technical
conditions underlying ChIP-Seq normalization methods impacts whether peaks with
differential DNA occupancy are classified as differentially bound in downstream anal-
ysis. Thus, we present Figure 6.2 to investigate the average power associated with
ChIP-Seq normalization methods as we vary the proportion of peaks with differential
DNA occupancy.
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Figure 6.2: Average power under different simulation conditions. The average
power for each normalization method, faceted by simulation condition. The horizontal
axis is the proportion of peaks with differential DNA occupancy, and the vertical axis
is the average power. Note that the highest power possible is 1, which only occurs
when all peaks with differential DNA occupancy are classified as differentially bound.
Normalization methods with higher power are considered to be performing better.

By comparing Figures 6.1 and 6.2, we see that for certain normalization methods,
while the average false discovery rate increases as the proportion of peaks with dif-
ferential DNA occupancy increases, the average power decreases. For example, when
there is asymmetric differential DNA occupancy across the experimental states, the
average power associated with TMM (Reads in Peaks) and RLE (Reads in Peaks)
drops as the proportion of peaks with differential DNA occupancy increases (see Plots
(c), (d), (g), (f) in Figure 6.2). Moreover, RLE (Background Bins), TMM (Back-
ground Bins), and Library (Background Bins) have consistently lower average power
than the Oracle in Plots (e), (g), (h) of Figure 6.2 when there is a difference in
background binding, except when there is symmetry and a different total amount of
DNA occupancy. These results indicate that normalization by background generally
leads to a low proportion of the peaks with differential DNA occupancy being clas-
sified as differentially bound when the total background binding is different between
the experimental states.
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While Figures 6.1 and 6.2 help us understand how the average false discovery rate
and power vary for different normalization methods across all of the simulation condi-
tions, we can better see the effects of violating the technical conditions on individual
normalization methods by looking at the different metrics one simulation condition
at a time. Thus, we present our simulation results, only looking at one simulation
condition at a time in Sections 6.2, 6.3, 6.4, and 6.5.

6.2 Simulation Results: All Technical Conditions

Met

Figure 6.3: Simulation panels where all technical conditions are met. The
horizontal axis is the proportion of peaks with differential DNA occupancy. The
vertical axis is the value for the simulation metric. The figure is faceted such that
each subplot represents one of the three simulation metrics. Note the scale change
between each facet in the figure. Plot (a) is the average false discovery rate. The
horizontal black line in Plot (a) is the 0.05 threshold we set for the FDR. Plot (b) is
the average power. The horizontal black line at 1 in Plot (b) represents the highest
average power possible. Plot (c) is the average absolute size factor ratio relative to
the Oracle. The horizontal line at 1 in Plot (c) represents the Oracle’s size factor
ratio with itself. Thus, a normalization method tracks closely with the Oracle if its
curve is close to the horizontal black line at 1 in Plot (c). Recall that MAnorm2 does
not have a size factor and, thus, is not plotted in Plot (c).
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In Figure 6.3, all the normalization methods track relatively closely with the Oracle
with respect to the average false discovery rate (Plot (a)). Moreover, while some nor-
malization methods have lower power, on average, than other normalization methods,
all normalization methods have an average power above 70% (Plot (b)). Interest-
ingly, RLE (Background Bins) and Library Size (Background Bins) have size factors
that are very different from the Oracle’s, on average (Plot (c)). Yet, RLE (Back-
ground Bins) and Library Size (Background Bins) still seem to be performing well
with respect to the average false discovery rate and power.

6.3 Effect of Asymmetric Differential DNA Occu-

pancy

Figure 6.4: Effect of asymmetric differential DNA occupancy on normal-
ization methods. The horizontal axis is the proportion of peaks with differential
DNA occupancy. The vertical axis is the mean value for the simulation metric. The
figure is faceted such that each facet represents one of the three simulation metrics.
Note the scale change between each facet in the figure. Plot (a) is the average false
discovery rate. The horizontal black line in Plot (a) is the 0.05 threshold we set for
the FDR. Plot (b) is the average power, and the horizontal black line at 1 represents
the highest average power possible. Plot (c) is the average absolute size factor ratio
relative to the Oracle. The horizontal line at 1 represents the Oracle’s size factor
ratio with itself. Thus, a normalization method has a size factor close to the Oracle’s
if its curve is close to the horizontal black line at 1 in Plot (c). Recall that MAnorm2
does not have a size factor, and thus, its curve is not present in Plot (c).
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Figure 6.4 depicts the average false discovery rate, average power, and average ab-
solute size factor ratio relative to the Oracle when only the technical condition of
symmetric differential DNA occupancy across experimental states is violated. As
noted in Section 6.1, RLE (Reads in Peaks) and TMM (Reads in Peaks) do a poor
job of controlling the average false discovery rate relative to the 0.05 cut-off as well
as the Oracle, especially when there is a high proportion of peaks with differential
DNA occupancy (see Plot (a) of Figure 6.4). Moreover, the average power associated
with RLE (Reads in Peaks) and TMM (Reads in Peaks) decreases to below 25% as
the proportion of peaks with differential DNA occupancy increases (see Plot (b) of
Figure 6.4). The size factors associated with RLE (Reads in Peaks) and TMM (Reads
in Peaks) also diverge (on average) from the Oracle’s as the proportion of peaks with
differential DNA occupancy increases (see Plot (c) of Figure 6.4). Notably, we see
that the average absolute size factor ratios associated with RLE (Reads in Peaks)
and TMM (Reads in Peaks) become greater than the average absolute size factor
ratios associated with other normalization methods when the proportion of peaks
with differential DNA occupancy passes 50%. When more than 50% of the peaks
have differential DNA occupancy, we expect the median (and mean) peak to have
differential DNA occupancy. Thus, given TMM (Reads in Peaks) and RLE (Reads
in Peaks) both rely on the central peak not having differential DNA occupancy to
properly normalize the read counts, it makes sense that average absolute size factor
ratios associated with TMM (Reads in Peaks) and RLE (Reads in Peaks) become
greater than the average absolute size factor ratios associated with other normaliza-
tion methods when the proportion of peaks with differential DNA occupancy passes
50%.
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6.4 Effect of Different DNA Occupancy

Figure 6.5: Effect of different total DNA occupancy on normalization meth-
ods. The horizontal axis is the proportion of peaks with differential DNA occupancy.
The vertical axis is the average value for the simulation metric. The figure is faceted
such that each facet represents one simulation metric. Note the scale change between
each facet in the figure. Plot (a) is the average false discovery rate. The horizontal
black line in Plot (a) is the 0.05 threshold we set for the FDR. Plot (b) is the average
power with the horizontal black line at 1 representing the highest possible average
power. Plot (c) is the average absolute size factor ratio relative to the Oracle. The
horizontal line at 1 in Plot (c) represents the Oracle’s size factor ratio with itself.
Thus, a normalization method has a size factor close to the Oracle’s if its curve is
close to the horizontal black line at 1 in Plot (c). Recall that MAnorm2 does not
have a size factor, and thus, its curve is not present in Plot (c).

Figure 6.5 depicts the average false discovery rate, power, and average absolute size
factor ratio relative to the Oracle when only the technical condition of an equal
amount of total DNA occupancy across the experimental states is violated. As dis-
cussed in Section 6.1, several methods perform poorly when an equal amount of total
DNA occupancy across experimental states is violated. As seen in Plot (a) of Figure
6.5, the normalization methods that perform poorly with respect to the average false
discovery rate are TMM (Background Bins), Library Size (Background Bins), RLE
(Background Bins), Library Size (Reads in Peaks), and MAnorm2. Despite these
normalization methods performing poorly with respect to the average false discov-
ery rate, all the normalization methods have an average power above 85% (see Plot
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(b) of Figure 6.5). In other words, the normalization methods all result in a large
proportion of the peaks with differential DNA occupancy being classified as differen-
tially bound. The average absolute size factor ratio relative to the Oracle increases
for all the normalization methods as the proportion of peaks with differential DNA
occupancy increases (see Plot (c) of Figure 6.5). However, TMM (Background Bins)
and RLE (Background Bins) uniformly have the highest average absolute size factor
relative to the Oracle.

6.5 Effect of Different Background Binding

Figure 6.6: Effect of different background binding on normalization meth-
ods. The horizontal axis is the proportion of peaks with differential DNA occupancy.
The vertical axis is the average value for the simulation metric. The figure is faceted
such that each facet represents one simulation metric. Note the scale change between
each facet in the figure. Plot (a) is the average false discovery rate. The horizontal
black line in Plot (a) is the 0.05 threshold we set for the FDR. Plot (b) is the aver-
age power with the horizontal black line at 1 representing the highest average power
possible. Plot (c) is the average absolute size factor ratio relative to the Oracle. The
horizontal line at 1 in Plot (c) represents the Oracle’s size factor ratio with itself.
Thus, a normalization method has a size factor close to the Oracle’s if its curve is
close to the horizontal black line at 1. Recall that MAnorm2 does not have a size
factor, and thus, its curve is not present in Plot (c).
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Figure 6.6 depicts the average false discovery rate, average power, and average abso-
lute size factor ratio relative to the Oracle when only the technical condition of an
equal amount of background binding across experimental states is violated. TMM
(Background Bins) and RLE (Background Bins) perform the worst across all three
metrics when there is a different amount of total background binding across the exper-
imental states. That is, TMM (Background Bins) and RLE (Background Bins) have
the highest average false discovery rate, lowest power, and highest average absolute
size factor ratio relative to the Oracle in Plots (a), (b), (c) of Figure 6.6. Notably,
we see in Plot (c) of Figure 6.6 that the average absolute size factor ratio relative
to the Oracle remains constant for TMM (Background Bins) and RLE (Background
Bins) across different proportions of peaks with differential DNA occupancy. Given
that the average absolute size factor ratio relative to the Oracle remains constant
as the proportion of peaks with differential DNA occupancy increases indicates that
the average false discovery rate is decreasing for TMM (Background Bins) and RLE
(Background Bins) in virtue of there being fewer peaks to falsely discover as dif-
ferentially bound rather than TMM (Background Bins) and RLE (Background Bins)
performing better at a higher proportion of peaks with differential DNA binding when
an equal amount of total background binding is violated.
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Chapter 7

Conclusion

Data collected via chromatin immunoprecipitation followed by high throughput se-
quencing (i.e., ChIP-Seq) provides vital insights into locations on the genome where
there are differences in DNA occupancy between experimental states (i.e., differen-
tial DNA occupancy) (Wu et al., 2015). However, since ChIP-Seq data is collected
experimentally, differences in DNA binding can arise due to experimental artifacts or
random chance rather than differential DNA occupancy. Hence, ChIP-Seq data must
be normalized to accurately assess which genomic regions have differential DNA oc-
cupancy. While normalization is an essential step in identifying genomic regions with
differential DNA occupancy, there is a dearth of literature dedicated to examining the
primary technical conditions that underlie ChIP-Seq between-sample normalization
methods.

In this thesis, we identified three primary technical conditions that ChIP-Seq
between-sample normalization methods rely upon, (1) symmetric differential DNA
occupancy, (2) equal amount of total DNA occupancy, and (3) equal amount of total
background binding. We then categorized various ChIP-Seq normalization methods
by their technical conditions. A major contribution of this thesis is our ChIP-Seq read
count simulation, where we examine the effects of violating different combinations of
the primary technical conditions on ChIP-Seq normalization methods to corroborate
our categorization. In particular, we examined how the average false discovery rate,
power, and average absolute size factor relative to the Oracle changed for the various
normalization methods when we violated different combinations of the primary tech-
nical conditions and varied the proportion of peaks with differential DNA occupancy.

Our simulation results (presented in Chapter 6) underscore how the choice of
ChIP-Seq normalization method impacts the biological conclusions drawn from the
read count data. For example, if a researcher were to use TMM (Reads in Peaks)
when there is asymmetric differential DNA occupancy, then a large proportion of
the peaks that are classified as differentially bound in their analysis would have no
differential DNA occupancy across the experimental states (see Plot (a) of Figure 6.4).
Thus, they might falsely conclude that there is differential DNA occupancy in various
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genomic regions even when there is not. Therefore, we suggest that researchers use
their prior understanding of the experiment at hand to guide their choice of ChIP-Seq
normalization method.

A possible extension to our analysis would be to compare various ChIP-Seq nor-
malization methods on real ChIP-Seq read count data that has spiked-in peaks. Using
real ChIP-Seq read count data with spiked-in peaks would enable us to compare nor-
malization with spike-ins to other ChIP-Seq normalization methods, which was not
possible in this thesis’ analysis in virtue of how we simulated ChIP-Seq read counts.
Another direction of future work could be to examine the technical conditions under-
lying other ChIP-seq normalization methods that we did not consider in our analysis,
such as CisGenome (Ji et al., 2011), CCAT (Xu et al., 2010), ChIPIN (Polit et al.,
2021), and NCIS (Liang and Keleş, 2012). We hope that our thesis provides a frame-
work for such analysis.
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Chapter 8

Supplementary Materials

8.1 ChIP-Seq Simulation Code

The code we created to simulate ChIP-Seq read count data and generate figures
presented in Chapter 6 can be accessed through our GitHub repository. We would
like to thank Lun and Smyth (2016) and Evans et al. (2016), whose publicly available
code helped us create the ChIP-Seq read count simulation provided in our GitHub
repository.
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8.2 Confidence Intervals for Simulation Results

Figure 8.1: 95% confidence intervals for the average false discovery rate.
95% Confidence Intervals for the average false discovery rate associated with each
normalization method, faceted by simulation condition. The horizontal axis is the
proportion of peaks that have differential DNA occupancy, and the vertical axis is
the average false discovery rate. Each plot has a black horizontal line at 0.05, which
is the cut-off we specified for the false discovery rate. The shaded regions denote the
95% confidence interval for the average false discovery rate associated with a given
normalization method at each proportion of peaks with differential DNA occupancy.
The 95% confidence interval for the mean false discovery rate is calculated as follows:
FDR± 2 · sd(FDR)√

100
.
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Figure 8.2: 95% confidence intervals for the average power. 95% Confidence
Intervals for the average power associated with each normalization method, faceted
by simulation condition. The horizontal axis is the proportion of peaks that have
differential DNA occupancy, and the vertical axis is the average power. Each plot has
a black horizontal line at 1, which denotes the highest possible average power. The
shaded regions denote the 95% confidence interval for the average power associated
with the given normalization method at each proportion of peaks with differential
DNA occupancy. The 95% confidence interval for the mean power is calculated as
follows: Power± 2 · sd(Power)√

100
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8.3 The Benjamini-Hochberg Method

The Benjamini-Hochberg method seeks to control the false discovery rate across mul-
tiple comparisons (Benjamini and Hochberg, 1995). Let p1, p2, . . . , pk be the (raw)
p-values across k hypothesis tests. The p-values across the k hypothesis tests are
then ranked, with the lowest p-value receiving the highest rank. Let p(1), p(2), . . . , p(k)
be the p-values ordered by rank, and i denote the largest p-value rank where the
following equation holds:

p(i) ≤ α · i
k

(8.1)

where α is the false discovery rate that we want to maintain across the k hypoth-
esis tests.

Then, the p-values p(1), . . . , p(i) are considered statistically significant under the Benjamini-
Hochberg method at the false discovery rate threshold of α (Benjamini and Hochberg,
1995).
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