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1 Overview of Multi-Network Analyses

Tolochko & Boomgaarden (2024) define multilevel approach to network analysis as character-
ized by the following “dependency assumptions”:

A set of 𝑁 nodes (e.g., people) broken down into 𝐾 separate blocks (e.g., classes)
such that edges 𝐸 within a block are 𝐴𝑘 are structurally dependent on each other.
The nodes 𝑁 are independent across the 𝐾 blocks (i.e., no structural possibility
for nodes from different blocks to have a tie). Finally, the edges 𝐸 have an “infor-
mational dependency” across blocks 𝐾 in the sense that they are formed according
to a similar dependency structure (e.g., reciprocity, transitivity, etc.). In other
words, different blocks have a similar data generating processes behind the tie for-
mation. Therefore, knowing somehting about the structure properties of block 𝐴𝑖
may inform the generation of ties in block 𝐴𝑗 (pg. 2).

For our data, we assume this multilevel approach. Specifically, in each classroom, we want to
model the conditional probability of an avoidance tie from student 𝑖 to classmate 𝑗. The avoid-
ance edges within each classroom are structurally dependent on each other and the students
are independent across classrooms. However, we assume that the share a dependent structure,
or in other words, have a similar data generating process (though the exact coefficient values,
we do not assume are shared).

2 Same but different: A comparison of estimation approaches for
exponential random graph models for multiple networks

Tolochko & Boomgaarden (2024) outline two methods for estimating multiple networks:
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1. A meta-analytic or hierarchical approach. The entire population is estimated as a sin-
gle “super-network”, with structural zeros imposed such that actors from different sub-
populations cannot interact with each other (an example of this is a a block diagonal
approach).

2. An integrated approach. A two-step regression approach in which individual enetwork
statistics are estimated in the first step and then coefficients are pooled relative to the
“grand mean” in the second step. The meta-analysis can estimate the variance in he
structural characteristics between different networks via a mixed effects model in the
second step. For example, Lubbers (2003) and Lubbers & Snijders (2007) proposed:

̂𝜃𝑚 = 𝜇𝜃 + 𝑈𝑚 + 𝐸𝑚

Here, ̂𝜃𝑚 is the estimated parameter for network 𝑚, 𝜇𝜃 is the average coefficient, 𝑈𝑚 is the
deviation in network 𝑚 from this grand mean with 𝑈𝑚 ∼ 𝒩(0, 𝜎2

𝜃), and 𝐸𝑚 is the estimation
error.

For both the hierarchical and integrated approaches, no pooling, partial pooling, or complete
pooling approaches can be used.

• Complete pooling entails that all networks are assumed to be generated by the same data
generating process.

• No pooling entails that all networks are assumed to be generated by independent data
generating processes.

• Partial pooling entails combining all available information from individual networks and
the clusters these networks are in.

According to Tolochko & Boomgaarden (2024), partial pooling is almost always the preferred
method when dealing with clustered data.

Both the hierarchical and integrated method for multiple network analyses can implement a
partial pooling approach (Tolochko & Boomgaarden, 2024).

• For the hierarchical approach: use a Bayesian hierarchical model for the two-step regres-
sion. Partial pooling in the hierarchical approach can be done using the ergm
package with the Stan statistical modeling language and the brms package.

• For the integrated approach: model the local and global dependence simultaneously.
Partial pooling in the integrated approach can be done using the mlergm
package
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2.1 Their Analysis

Tolochko & Boomgaarden (2024) evaluate the (relative) performance of the two methods
through an empirical case study and an simulated case study using the software mentioned in
the section above.

Empirical Case Study (Study 1): 121 networks (school classes), nested in 15 different
schools, across three different countries (Germany, Italy, and Portugal). Importantly, this
dataset is quite unique because it has several hierarchical levels (classes, schools, and countries),
allowing us to compare how partial pooling of estimates works on multiple clustering levels
(Tolochko & Boomgaarden, 2024).

Simulated Case Study (Study 2): Let 𝜃𝑖𝑗 denote the 𝑖th network coefficient for group 𝑗,
𝜇 denote the “grand mean” of the coefficient, Δ𝑗 denote the group effects, and 𝛿𝑗 denote the
variance of the group effect for group 𝑗. The model for the input parameters of the Monte
Carlo simulation is the following:

𝜃𝑖𝑗 = 𝜇𝑖 + Δ𝑗
Δ𝑖 ∼ 𝒩(0, 𝛿𝑗)

The realized 𝜃 coefficients are then fed into the ERGM simulation algorithm to simulate random
networks (Tolochko & Boomgaarden, 2024). They vary the input parameters (number of
groups, group size, nodes per network, and group effect size). See Table 1 for a summary of
the variations in the input parameters.

2.2 Conclusions

Given the ground truth is only known in the simulated case study (Study 2), I just report
these results. Specifically, they looked at the absolute error and predicted MAE for three
approaches: (1) Hierarchical (no group), (2) Hierarchical (group), and (3) Integrated. The
results are shown in Figure 6 and Table 2.

Tolochko & Boomgaarden (2024) find that the hierarchical regression model (with errors clus-
tered on the group level) was most accurate, with the smallest mean absolute error across all
conditions (pg. 8). The hierarchical model with no grouping was a close second (pg. 8), and
the integrated approach was least accurate, with the largest mean absolute error across all
conditions (pg. 9).

Group effect size and number of groups were the simulation factors with the largest influence
on the absolute error. The number of networks and size of networks decreased the absolute
error (Tolochko & Boomgaarden, 2024).
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2.3 Implementations

The first author has created a ERGMeta package based on the paper (Tolochko & Boomgaarden,
2024). Here is the GitHub Repository for the ERGMeta package. Overall, it looks relatively
straight forward to implement.

Tolochko & Boomgaarden (2024) also include several references to other papers which use
hierarchical meta-analysis approaches on network data. Listed below are some which also
include their implementation code:

• Minozzi et al. (2019); replication code

• Röver (2020); bayesmeta package

3 A Bayesian multilevel model for populations of networks using
exponential-family random graphs

Lehmann & White (2024) describe a model for when the outcome of interest is a network-
valued random variable whose distribution is given by an exponential random graph model.
Their method is a Bayesian hierarchical model than can be used to model a “population” of
networks. They formalize their Bayesian hierarchical ERGM model as follows:

Let Y = (Y(1), … , Y(𝑛)) be a set of 𝑛 networks and let 𝑋 ∈ ℝ𝑛×𝑞 be a matrix of 𝑞 network-level
covariates. Identify each network Y(𝑖) with its own vector-valued ERGM parameter 𝜃(𝑖) and let
� = (𝜃(1), … , 𝜃(𝑛)) be the set of network-level parameters. The observed network y is assumed
to follow an ERGM conditional of the covariates and vector-valued parameter vector:

𝜋(y ∣ x, 𝜃) = exp {𝜂(𝜃)𝑇 𝑠(y, x)}
𝑍(𝜃) (1)

For each network, Y(𝑖) ∼ 𝜋(⋅ ∣ 𝜃(𝑖)). Note too that each ERGM must consist of the same set
of 𝑝 summary statistics 𝑠(⋅). Lehmann & White (2024) then propose the following multilevel
model (see Figure 1):

Y(𝑖) ∼ 𝜋 (⋅ ∣ 𝜃(𝑖)) , 𝑖 = 1, … , 𝑛
𝜃(𝑖) ∼ 𝒩 (𝑥𝑇

𝑖 𝛽, Σ𝜖) , 𝑖 = 1, … , 𝑛
(2)

In Equation 2, 𝛽 is a 𝑞 ×𝑝 matrix of parameters and 𝑥𝑖 is a vector of length 𝑞 that corresponds
to the 𝑖th column of 𝑋. There is an assumption that, conditional on their respective network-
level parameters 𝜃(𝑖), the Y(𝑖) are independent. Thus, the sampling distribution for the set of
networks 𝑌𝑌𝑌 is simply the product of the individual probability mass functions:
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𝜋(𝑦𝑦𝑦|𝜃𝜃𝜃) =
𝑛

∏
𝑖=1

𝜋(𝑦𝑦𝑦(𝑖)|𝜃(𝑖))

= exp {∑𝑛
𝑖=1 𝜃(𝑖)𝑇 𝑠(𝑦𝑦𝑦(𝑖))}

∏𝑛
𝑖=1 𝑍(𝜃(𝑖)) .

(3)

Figure 1: multibergm Diagram

3.1 Implementation

Lehmann & White (2024) implement their Bayesian hierarchical ERGM via the multibergm
package, which takes care of the “exchange-within-Gibbs MCMC algorithm” they implement
to generate samples from the doubly-intractable posterior distribution. This package claims to
be built on and inspired by the ergm R package and uses the same syntax to specify models.

Note: I had to do some manual editing of functions and install an old version of R to use
ergm 3.11.0 in order to get the functions in this package to run.

#devtools::install_github("brieuclehmann/multibergm")
#packageurl <- "https://cran.r-project.org/src/contrib/Archive/ergm/ergm_3.11.0.tar.gz"
#install.packages(packageurl, repos = NULL, type = "source")
library(multibergm)
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3.1.1 Vignette Example

The multibergm vignette uses data from David Krackhardt’s study on cognitive social struc-
tures (Krackhardt, 1987). The dataset consists of a set of friendship networks between 21
managers of a high-tech firm. There are 21 friendship networks, each corresponding to the
perceived network of one of the managers. There is also a single network with edges corre-
sponding to self-identified friendships among the 21 managers.

Figure 2: Sample of manager networks.

3.1.1.1 Fitting and analyzing a multi-network ERGM

set.seed(1)
fit1 <- multibergm(krackfr$networks ~ edges)

source('R/plot.multibergm.R')
source('R/summary.multibergm.R')
library(reshape2)
library(ggplot2)
par(mfrow = c(1, 2))
plot(fit1)
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plot(fit1, burn_in = 200)
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summary(fit1, burn_in = 200)
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Posterior Density Estimate for Model:
y ~ edges

[,1] [,2] [,3] [,4]
mu_(Intercept)_edges -2.55 0.1946 0.00688 0.007846

[,1] [,2] [,3] [,4] [,5]
mu_(Intercept)_edges -2.941 -2.685 -2.545 -2.415 -2.189

Theta acceptance rate:
0.411 (0.385, 0.452)
Mu acceptance rate:

0.385 (0.385, 0.385)

In order, the summary output shows the posterior mean, standard deviation, naive standard
error, time-series standard error, and quantiles of each of the parameters in the model (2.5%,
25%, 50%, 75%,97.5%) for the edges parameter. The summary output also provides the
acceptance rates for the individual-level (theta) and group-level (mu) parameters - more on
this below.

The default (hyper)priors on the group-level parameters (𝜇, Σ𝜃) are:

𝜇 ∼ 𝒩(0, 100𝐼)
Σ𝜃 ∼ 𝒲−1(𝑝 + 1, 𝐼)

where 𝑝 is the number of summary statistics in the model and 𝒲−1 denotes an inverse-
Wishart distribution. These can be manually specified using the set_priors function in
the multibergm package.

library(dplyr)
library(tidyr)
library(stringr)
df <- as.data.frame(fit1$params$theta[1, 200:1000, , 1]) |>

pivot_longer(everything(), names_to = 'network',
values_to = 'edges_posterior') |>

mutate(network = as.factor(as.numeric(str_sub(network, start = 2))))

df |>
ggplot(aes(x = edges_posterior))+
geom_density(aes(color = network, fill = network), alpha = 0.1)+
geom_vline(aes(xintercept = mean(edges_posterior)))+
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geom_vline(aes(xintercept = as.numeric(coef(fit1$params$mu)[1,2])),
linetype = 'dashed')+

theme_minimal()+
labs(y = 'Density', x = 'Edges coefficeint posterior draws',,

color = 'Manager Network', fill = 'Manager Network')
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library(knitr)
mean(df$edges_posterior)

[1] 0.003634756

# ERGM coefficients estimates
single_fits <- lapply(krackfr$networks, function(x) ergm(x ~ edges))
single_coefs <- as.matrix(sapply(single_fits, coef))

coef(fit1$params) |>
dplyr::select(term, estimate) |>
filter(grepl('^theta\\[',term)) |>
mutate(fixed_effect = -2.519,
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coef = fixed_effect + estimate) |>
cbind(single_coefs) |>
mutate(diff_coef = single_coefs - coef) |>
knitr::kable(digits = 3)

term estimate fixed_effect coef single_coefs diff_coef
edges theta[1,1] 0.721 -2.519 -1.798 -1.792 0.006
edges.1 theta[2,1] -0.372 -2.519 -2.891 -2.944 -0.053
edges.2 theta[3,1] -1.334 -2.519 -3.853 -4.078 -0.224
edges.3 theta[4,1] 0.160 -2.519 -2.359 -2.367 -0.008
edges.4 theta[5,1] 0.875 -2.519 -1.644 -1.627 0.018
edges.5 theta[6,1] -0.078 -2.519 -2.597 -2.601 -0.004
edges.6 theta[7,1] 1.027 -2.519 -1.492 -1.478 0.014
edges.7 theta[8,1] -1.501 -2.519 -4.020 -4.419 -0.399
edges.8 theta[9,1] -1.391 -2.519 -3.910 -4.234 -0.324
edges.9 theta[10,1] 0.388 -2.519 -2.131 -2.120 0.011
edges.10 theta[11,1] 0.898 -2.519 -1.621 -1.592 0.028
edges.11 theta[12,1] -0.149 -2.519 -2.668 -2.678 -0.010
edges.12 theta[13,1] 0.112 -2.519 -2.407 -2.462 -0.055
edges.13 theta[14,1] 0.486 -2.519 -2.033 -2.048 -0.014
edges.14 theta[15,1] 0.116 -2.519 -2.403 -2.429 -0.027
edges.15 theta[16,1] -0.173 -2.519 -2.692 -2.760 -0.068
edges.16 theta[17,1] 0.298 -2.519 -2.221 -2.224 -0.003
edges.17 theta[18,1] -0.359 -2.519 -2.878 -2.944 -0.066
edges.18 theta[19,1] 0.968 -2.519 -1.551 -1.542 0.009
edges.19 theta[20,1] -1.051 -2.519 -3.570 -3.714 -0.144
edges.20 theta[21,1] 0.504 -2.519 -2.015 -2.001 0.014

3.1.1.2 Goodness of fit

source('R/gof.multibergm.R')
library(plyr)
library(statnet.common)
gof(fit1, burn_in = 200)

10



0.00

0.25

0.50

0.75

0 5 10 15
In−degree

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

0 5 10 15
Out−degree

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 Inf
Geodesic distance

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 5 10 15
Edgewise shared partners

P
ro

ba
bi

lit
y

init <- list()
init$mu_pop <- colMeans(single_coefs) #initializing with individual ERGM est.
init$theta <- sweep(single_coefs, 1, init$mu_pop)
init$cov_theta <- cov(init$theta)
init$mu <- as.matrix(colMeans(single_coefs))

3.1.1.3 Second vignette example with specified initial values

fit2 <- multibergm(krackfr$networks ~ edges, init = init)

gof(fit2)
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4 A Scalable Exponential Random Graph Model: Amortised
Hierarchical Sequential Neural Posterior Estimation with
Applications in Neuroscience

Note: I did not spend a lot of time with this paper given it does not include code for
implementing their method (only algorithm outlines throughout the paper). In turn, I just
summarize the article’s claimed contributions and main findings.

Fan & White (2025) propose an “Amortised Hierarchical Sequential Neural Posterior Esti-
mation” (AHS-NPE) approach to jointly model a group or population of networks using a
hierarchical Bayesian setup, which effectively lowers the computational demand for increasing
the number of network samples in a multi-network hierarchical ERGM framework.

• Neural Posterior Estimation (NPE) is a likelihood-free approach where a neural network-
based conditional estimator is trained to infer the Bayesian posterior distribution (Fan &
White, 2025). NPE has shown better amortisation (which focuses on the cost of re-fitting
the model upon inference on a new observation and thus is related to computational
efficiency).

Specifically, Fan & White (2025) use NPE to estimate “local parameters for individual net-
works and use an analytically tractable variational approximation scheme for the hierarchical
parameters”. Further, the EM algorithm is used to iteratively train, refine and adjust the
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normalizing flow-based estimator and training data (Fan & White, 2025). More information
on the estimation scheme is given in Algorithm 1, 2, and 3.

Fan & White (2025) compare their model to the hierarchical Bayesian ERGM approach from
Lehmann & White (2024). First, they reproduce the results from the empirical fMRI Cam-
CAN data (Lehmann & White, 2024). Like Lehmann & White (2024), each individual network
is assumed to follow a ERGM.

• “Overall, AHS-NPE demonstrates accurate estimation and consistency with conventional
Bayesian fittings, aligning closely with both our Bayesian fitting and Lehmann & White
(2024)’s fitting”. Thus, Fan & White (2025) conclude their method (AHS-NPE) is a
“reliable tool for network analysis studies”

• Per Fan & White (2025), AHS-NPE is also “a much scalable modelling framework, which
proves to be essential for the developed MN-ERGMs.” Indeed, the computational demand
for conditional density estimation are approximately the same between the implemen-
tation on 100 and 256 network samples (per group) since amortisation means once the
model is trained, the inference step is negligible (Fan & White, 2025).

5 My Current Thoughts

• Based on what I could find, it seems like if we want to do a something similar to a tradi-
tional “mixed effects” approach from regression and not write the estimation algorithm
from scratch, our best bet would be to use the mulitbergm package in order to obtain
network-level random effects. However, this package has not been updated in at least a
year and hasn’t been used by that many others (based on Google scholar citations).

• That said, there seems to be evidence towards using a two-step modeling hierarchical
Bayesian (or mixed effects) approach to partially pool across multiple networks (e.g.,
based on Tolochko & Boomgaarden (2024)). The downside, though, of these approach
is we would have to cull the number of covariates we have in our ERGM since our class
networks might be only 15 students or so. I am also unclear how (or whether) the
two-step modeling approach accounts for the two levels of statistical uncertainty.

Note: I don’t think these papers are super relevant (I found them when trying to find methods
for modeling populations of networks with ERGMs where there are network-level random
effects). However, just in case they are helpful in some way (e.g., maybe doing an “integrative
approach” but with group-level random effect on classid):

• ERGMs with nodal-level random effects

• ERGMs with individual (or group) level random effects
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